Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies
SARS-CoV-2 infection—which involves both cell attachment and membrane fusion—relies on the angiotensin-converting enzyme 2 (ACE2) receptor, which is paradoxically found at low levels in the respiratory tract 1 – 3 , suggesting that there may be additional mechanisms facilitating infection. Here we s...
Saved in:
Published in | Nature (London) Vol. 598; no. 7880; pp. 342 - 347 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.10.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | SARS-CoV-2 infection—which involves both cell attachment and membrane fusion—relies on the angiotensin-converting enzyme 2 (ACE2) receptor, which is paradoxically found at low levels in the respiratory tract
1
–
3
, suggesting that there may be additional mechanisms facilitating infection. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid–binding immunoglobulin-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the amino-terminal domain or to the conserved site at the base of the receptor-binding domain, while poorly neutralizing infection of ACE2-overexpressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the receptor binding motif, while potently neutralizing infection of ACE2-overexpressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike, promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.
C-type lectins and SIGLEC1 function as attachment receptors for SARS-CoV-2 and enhance ACE2-mediated infection. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0028-0836 1476-4687 1476-4687 |
DOI: | 10.1038/s41586-021-03925-1 |