Memory impairment and alterations in prefrontal cortex gamma band activity following methamphetamine sensitization

Rationale Repeated methamphetamine (MA) use leads to increases in the incentive motivational properties of the drug as well as cognitive impairments. These behavioral alterations persist for some time following abstinence, and neuroadaptations in the structure and function of the prefrontal cortex (...

Full description

Saved in:
Bibliographic Details
Published inPsychopharmacology Vol. 232; no. 12; pp. 2083 - 2095
Main Authors Janetsian, Sarine S., Linsenbardt, David N., Lapish, Christopher C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2015
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rationale Repeated methamphetamine (MA) use leads to increases in the incentive motivational properties of the drug as well as cognitive impairments. These behavioral alterations persist for some time following abstinence, and neuroadaptations in the structure and function of the prefrontal cortex (PFC) are particularly important for their expression. However, there is a weak understanding of the changes in neural firing and oscillatory activity in the PFC evoked by repeated drug use, thus complicating the development of novel treatment strategies for addiction. Objectives The purpose of the current study was to assess changes in cognitive and brain function following MA sensitization. Methods Sensitization was induced in rats, then temporal and recognition memory were assessed after 1 or 30 days of abstinence. Electrophysiological recordings from the medial PFC were also acquired from rats whereupon simultaneous measures of oscillatory and spiking activity were examined. Results Impaired temporal memory was observed after 1 and 30 days of abstinence. However, recognition memory was only impaired after 1 day of abstinence. An injection of MA profoundly decreased neuronal firing rate and the anesthesia-induced slow oscillation (SO) in both sensitized (SENS) and control (CTRL) rats. Strong correlations were observed between the SO and gamma band power, which was altered in SENS animals. A decrease in the number of neurons phase-locked to the gamma oscillation was also observed in SENS animals. Conclusions The changes observed in PFC function may play an integral role in the expression of the altered behavioral phenotype evoked by MA sensitization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0033-3158
1432-2072
1432-2072
DOI:10.1007/s00213-014-3840-7