Effects of soluble guanylate cyclase stimulator on renal function in ZSF-1 model of diabetic nephropathy

Diabetic nephropathy is associated with endothelial dysfunction and oxidative stress, in which the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway is impaired. We hypothesize that sGC stimulator Compound 1 can enhance NO signaling, reduce protein...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 1; p. e0261000
Main Authors Hu, Lufei, Chen, Yinhong, Zhou, Xiaoyan, Hoek, Maarten, Cox, Jason, Lin, Ken, Liu, Yang, Blumenschein, Wendy, Grein, Jeff, Swaminath, Gayathri
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.01.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Diabetic nephropathy is associated with endothelial dysfunction and oxidative stress, in which the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway is impaired. We hypothesize that sGC stimulator Compound 1 can enhance NO signaling, reduce proteinuria in a diabetic nephropathy preclinical model with diminished NO bioavailability and increased oxidized sGC. Therefore, we evaluated the effect of sGC stimulator Compound 1 on the renal effect in obese ZSF1 (ZSF1 OB) rats. The sGC stimulator Compound 1, the standard of care agent Enalapril, and a combination of Compound 1 and Enalapril were administered chronically to obese ZSF1 rats for 6 months. Mean arterial pressure, heart rate, creatinine clearance for glomerular filtration rate (eGFR), urinary protein excretion to creatinine ratio (UPCR), and urinary albumin excretion ratio (UACR) were determined during the study. The histopathology of glomerular and interstitial lesions was assessed at the completion of the study. While both Compound 1 and Enalapril significantly reduced blood pressure, the combination of Compound 1 and Enalapril normalized blood pressure levels. Compound 1 improved eGFR and reduced UPCR and UACR. A combination of Enalapril and Compound 1 resulted in a marked reduction in UPCR and UACR and improved GFR. The sGC stimulator Compound 1 as a monotherapy slowed renal disease progression, and a combination of the sGC stimulator with Enalapril provided greater renal protection in a rodent model of diabetic nephropathy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have read the journal’s policy and have the following competing interests: all authors were paid employees of Merck & Co., Inc. at the time of the study. There are no patents, products in development or marketed products associated with this research to declare. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0261000