Nonlinearity-induced nanoparticle circumgyration at sub-diffraction scale

The ability of light beams to rotate nano-objects has important applications in optical micromachines and biotechnology. However, due to the diffraction limit, it is challenging to rotate nanoparticles at subwavelength scale. Here, we propose a method to obtain controlled fast orbital rotation (i.e....

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 3722
Main Authors Qin, Yaqiang, Zhou, Lei-Ming, Huang, Lu, Jin, Yunfeng, Shi, Hao, Shi, Shali, Guo, Honglian, Xiao, Liantuan, Yang, Yuanjie, Qiu, Cheng-Wei, Jiang, Yuqiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ability of light beams to rotate nano-objects has important applications in optical micromachines and biotechnology. However, due to the diffraction limit, it is challenging to rotate nanoparticles at subwavelength scale. Here, we propose a method to obtain controlled fast orbital rotation (i.e., circumgyration) at deep subwavelength scale, based on the nonlinear optical effect rather than sub-diffraction focusing. We experimentally demonstrate rotation of metallic nanoparticles with orbital radius of 71 nm, to our knowledge, the smallest orbital radius obtained by optical trapping thus far. The circumgyration frequency of particles in water can be more than 1 kHz. In addition, we use a femtosecond pulsed Gaussian beam rather than vortex beams in the experiment. Our study provides paradigms for nanoparticle manipulation beyond the diffraction limit, which will not only push toward possible applications in optically driven nanomachines, but also spur more fascinating research in nano-rheology, micro-fluid mechanics and biological applications at the nanoscale. It has been challenging to rotate nanoparticles orbitally via optical trapping beyond the diffraction limit. Here, the authors take advantage of the nonlinear optical effect and demonstrate fast and controlled orbital rotation at subwavelength scale with a femtosecond pulsed Gaussian beam.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24100-0