Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color

Creating a security label that carries entirely distinct information in reflective and fluorescent states would enhance anti-counterfeiting levels to deter counterfeits ranging from currencies to pharmaceuticals, but has proven extremely challenging. Efforts to tune the reflection color of luminesce...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 699
Main Authors Qin, Lang, Liu, Xiaojun, He, Kunyun, Yu, Guodong, Yuan, Hang, Xu, Ming, Li, Fuyou, Yu, Yanlei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.01.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Creating a security label that carries entirely distinct information in reflective and fluorescent states would enhance anti-counterfeiting levels to deter counterfeits ranging from currencies to pharmaceuticals, but has proven extremely challenging. Efforts to tune the reflection color of luminescent materials by modifying inherent chemical structures remain outweighed by substantial trade-offs in fluorescence properties, and vice versa, which destroys the information integrity of labels in either reflection or fluorescent color. Here, a strategy is reported to design geminate labels by programming fluorescent cholesteric liquid crystal microdroplets (two-tone inks), where the luminescent material is ‘coated’ with the structural color from helical superstructures. These structurally defined microdroplets fabricated by a capillary microfluidic technique contribute to different but intact messages of both reflective and fluorescent patterns in the geminate labels. Such two-tone inks have enormous potential to provide a platform for encryption and protection of valuable authentic information in anti-counterfeiting technology. Creating an enhanced-security-level label that carries entirely distinct information in different optical states has proven challenging. Here, the authors design geminate labels by programming fluorescent cholesteric liquid crystal microdroplets to encrypt fluorescent security information behind colorful reflective patterns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-20908-y