Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway

Immunoglobulin G (IgG) is a major effector molecule of the human immune response, and aberrations in IgG glycosylation are linked to various diseases. However, the molecular mechanisms underlying protein glycosylation are still poorly understood. We present a data-driven approach to infer reactions...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 8; no. 1; pp. 1483 - 15
Main Authors Benedetti, Elisa, Pučić-Baković, Maja, Keser, Toma, Wahl, Annika, Hassinen, Antti, Yang, Jeong-Yeh, Liu, Lin, Trbojević-Akmačić, Irena, Razdorov, Genadij, Štambuk, Jerko, Klarić, Lucija, Ugrina, Ivo, Selman, Maurice H. J., Wuhrer, Manfred, Rudan, Igor, Polasek, Ozren, Hayward, Caroline, Grallert, Harald, Strauch, Konstantin, Peters, Annette, Meitinger, Thomas, Gieger, Christian, Vilaj, Marija, Boons, Geert-Jan, Moremen, Kelley W., Ovchinnikova, Tatiana, Bovin, Nicolai, Kellokumpu, Sakari, Theis, Fabian J., Lauc, Gordan, Krumsiek, Jan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.11.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Immunoglobulin G (IgG) is a major effector molecule of the human immune response, and aberrations in IgG glycosylation are linked to various diseases. However, the molecular mechanisms underlying protein glycosylation are still poorly understood. We present a data-driven approach to infer reactions in the IgG glycosylation pathway using large-scale mass-spectrometry measurements. Gaussian graphical models are used to construct association networks from four cohorts. We find that glycan pairs with high partial correlations represent enzymatic reactions in the known glycosylation pathway, and then predict new biochemical reactions using a rule-based approach. Validation is performed using data from a GWAS and results from three in vitro experiments. We show that one predicted reaction is enzymatically feasible and that one rejected reaction does not occur in vitro. Moreover, in contrast to previous knowledge, enzymes involved in our predictions colocalize in the Golgi of two cell lines, further confirming the in silico predictions. IgG glycosylation is an important factor in immune function, yet the molecular details of protein glycosylation remain poorly understood. The data-driven approach presented here uses large-scale plasma IgG mass spectrometry measurements to infer new biochemical reactions in the glycosylation pathway.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-01525-0