Automatic COVID-19 severity assessment from HRV

COVID-19 is known to be a cause of microvascular disease imputable to, for instance, the cytokine storm inflammatory response and the consequent blood coagulation. In this study, we propose a methodological approach for assessing the COVID-19 presence and severity based on Random Forest (RF) and Sup...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 1713 - 10
Main Authors Aliani, Cosimo, Rossi, Eva, Luchini, Marco, Calamai, Italo, Deodati, Rossella, Spina, Rosario, Francia, Piergiorgio, Lanata, Antonio, Bocchi, Leonardo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.01.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:COVID-19 is known to be a cause of microvascular disease imputable to, for instance, the cytokine storm inflammatory response and the consequent blood coagulation. In this study, we propose a methodological approach for assessing the COVID-19 presence and severity based on Random Forest (RF) and Support Vector Machine (SVM) classifiers. Classifiers were applied to Heart Rate Variability (HRV) parameters extracted from photoplethysmographic (PPG) signals collected from healthy and COVID-19 affected subjects. The supervised classifiers were trained and tested on HRV parameters obtained from the PPG signals in a cohort of 50 healthy subjects and 93 COVID-19 affected subjects, divided into two groups, mild and moderate, based on the support of oxygen therapy and/or ventilation. The most informative feature set for every group’s comparison was determined with the Least Absolute Shrinkage and Selection Operator (LASSO) technique. Both RF and SVM classifiers showed a high accuracy percentage during groups’ comparisons. In particular, the RF classifier reached 94% of accuracy during the comparison between the healthy and minor severity COVID-19 group. Obtained results showed a strong capability of RF and SVM to discriminate between healthy subjects and COVID-19 patients and to differentiate the two different COVID-19 severity. The proposed method might be helpful for detecting, in a low-cost and fast fashion, the presence and severity of COVID-19 disease; moreover, these reasons make this method interesting as a starting point for future studies that aim to investigate its effectiveness as a possible screening method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-28681-2