Enzymes in the NAD+ Salvage Pathway Regulate SIRT1 Activity at Target Gene Promoters

In mammals, nic o tin a mide phosphoribosyltransferase (NAMPT) and nic o tin a mide mononucleotide ad en y lyltransferase 1 (NMNAT-1) constitute a nuclear NAD+ salvage pathway which regulates the functions of NAD+-de pend ent enzymes such as the protein deacetylase SIRT1. One of the major functions...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 284; no. 30; pp. 20408 - 20417
Main Authors Zhang, Tong, Berrocal, Jhoanna G., Frizzell, Kristine M., Gamble, Matthew J., DuMond, Michelle E., Krishnakumar, Raga, Yang, Tianle, Sauve, Anthony A., Kraus, W. Lee
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.07.2009
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In mammals, nic o tin a mide phosphoribosyltransferase (NAMPT) and nic o tin a mide mononucleotide ad en y lyltransferase 1 (NMNAT-1) constitute a nuclear NAD+ salvage pathway which regulates the functions of NAD+-de pend ent enzymes such as the protein deacetylase SIRT1. One of the major functions of SIRT1 is to regulate target gene transcription through modification of chromatin-associated proteins. However, little is known about the molecular mechanisms by which NAD+ biosynthetic enzymes regulate SIRT1 activity to control gene transcription in the nucleus. In this study we show that stable short hairpin RNA-mediated knockdown of NAMPT or NMNAT-1 in MCF-7 breast cancer cells reduces total cellular NAD+ levels and alters global patterns of gene expression. Furthermore, we show that SIRT1 plays a key role in mediating the gene regulatory effects of NAMPT and NMNAT-1. Specifically, we found that SIRT1 binds to the promoters of genes commonly regulated by NAMPT, NMNAT-1, and SIRT1 and that SIRT1 histone deacetylase activity is regulated by NAMPT and NMNAT-1 at these promoters. Most significantly, NMNAT-1 interacts with, and is recruited to target gene promoters by SIRT1. Collectively, our results reveal a mechanism for the direct control of SIRT1 deacetylase activity at a set of target gene promoters by NMNAT-1. This mechanism, in collaboration with NAMPT-de pend ent regulation of nuclear NAD+ production, establishes an important pathway for transcription regulation by NAD+.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.016469