Enhanced performance by a hybrid NIRS–EEG brain computer interface

Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance t...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 519 - 529
Main Authors Fazli, Siamac, Mehnert, Jan, Steinbrink, Jens, Curio, Gabriel, Villringer, Arno, Müller, Klaus-Robert, Blankertz, Benjamin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.01.2012
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2011.07.084

Cover

Loading…
Abstract Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm (SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the classification of NIRS data can complement ongoing real-time EEG classification. Our results show that simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor imagery in over 90% of considered subjects and increases performance by 5% on average (p<0:01). However, the long time delay of the hemodynamic response may hinder an overall increase of bit-rates. Furthermore we find that EEG and NIRS complement each other in terms of information content and are thus a viable multimodal imaging technique, suitable for BCI. ► We use multi-modal imaging (whole-head NIRS and EEG) for sensory motor rhythm based BCI. ► By the use of meta-classifiers we enhance performance by 5% on average. ► Some subjects, previously not able to operate a BCI, now become able to do so. ► NIRS and EEG have different information content and complement each other.
AbstractList Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm (SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the classification of NIRS data can complement ongoing real-time EEG classification. Our results show that simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor imagery in over 90% of considered subjects and increases performance by 5% on average (p<0:01). However, the long time delay of the hemodynamic response may hinder an overall increase of bit-rates. Furthermore we find that EEG and NIRS complement each other in terms of information content and are thus a viable multimodal imaging technique, suitable for BCI.Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm (SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the classification of NIRS data can complement ongoing real-time EEG classification. Our results show that simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor imagery in over 90% of considered subjects and increases performance by 5% on average (p<0:01). However, the long time delay of the hemodynamic response may hinder an overall increase of bit-rates. Furthermore we find that EEG and NIRS complement each other in terms of information content and are thus a viable multimodal imaging technique, suitable for BCI.
Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm (SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the classification of NIRS data can complement ongoing real-time EEG classification. Our results show that simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor imagery in over 90% of considered subjects and increases performance by 5% on average (p 0:01). However, the long time delay of the hemodynamic response may hinder an overall increase of bit-rates. Furthermore we find that EEG and NIRS complement each other in terms of information content and are thus a viable multimodal imaging technique, suitable for BCI.
Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm (SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the classification of NIRS data can complement ongoing real-time EEG classification. Our results show that simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor imagery in over 90% of considered subjects and increases performance by 5% on average (p<0:01). However, the long time delay of the hemodynamic response may hinder an overall increase of bit-rates. Furthermore we find that EEG and NIRS complement each other in terms of information content and are thus a viable multimodal imaging technique, suitable for BCI. ► We use multi-modal imaging (whole-head NIRS and EEG) for sensory motor rhythm based BCI. ► By the use of meta-classifiers we enhance performance by 5% on average. ► Some subjects, previously not able to operate a BCI, now become able to do so. ► NIRS and EEG have different information content and complement each other.
Author Fazli, Siamac
Steinbrink, Jens
Müller, Klaus-Robert
Mehnert, Jan
Villringer, Arno
Blankertz, Benjamin
Curio, Gabriel
Author_xml – sequence: 1
  givenname: Siamac
  surname: Fazli
  fullname: Fazli, Siamac
  email: fazli@cs.tu-berlin.de
  organization: Berlin Institute of Technology, Machine Learning Department, Berlin, Germany
– sequence: 2
  givenname: Jan
  surname: Mehnert
  fullname: Mehnert, Jan
  organization: Berlin NeuroImaging Center, University Hospital Charité, Berlin, Germany
– sequence: 3
  givenname: Jens
  surname: Steinbrink
  fullname: Steinbrink, Jens
  organization: Bernstein Focus: Neurotechnology, Berlin, Germany
– sequence: 4
  givenname: Gabriel
  surname: Curio
  fullname: Curio, Gabriel
  organization: Bernstein Focus: Neurotechnology, Berlin, Germany
– sequence: 5
  givenname: Arno
  surname: Villringer
  fullname: Villringer, Arno
  organization: Berlin NeuroImaging Center, University Hospital Charité, Berlin, Germany
– sequence: 6
  givenname: Klaus-Robert
  surname: Müller
  fullname: Müller, Klaus-Robert
  organization: Berlin Institute of Technology, Machine Learning Department, Berlin, Germany
– sequence: 7
  givenname: Benjamin
  surname: Blankertz
  fullname: Blankertz, Benjamin
  organization: Berlin Institute of Technology, Machine Learning Department, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21840399$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URH_gFZAlFqyS-iZ2Ym8Q0A6lUgUSP2vLcW6oh8QenKTS7HgH3pAnqaNphTQbZuNrS989vvecU3Lkg0dCKLAcGFTn69zjHIMbzA_MCwaQszpnkj8hJ8CUyJSoi6PlLspMAqhjcjqOa8aYAi6fkeMCJGelUifkcuVvjbfY0g3GLsRhedBmSw293TbRtfTT9Zevf3__Wa2uaBON89SGYTNPGKnz6eyMxefkaWf6EV881DPy_cPq28XH7Obz1fXFu5vMVqyaMsu5NQBd3SAIZRSvhGnAVlgraBga23UGq1JVhne8bQtRpokL1coODcOmLM_I653uJoZfM46THtxose-NxzCPWrGirEUN4r-kVFLykkGRyFd75DrM0ac1NAhWyTREAYl6-UDNzYCt3sTkfdzqRyMT8GYH2BjGMWKnrZvM5IKfkmm9BqaX5PRa_0tOL8lpVuuUXBKQewKPfxzQ-n7Xisn7O4dRj9bhEqqLaCfdBneIyNs9Eds776zpf-L2MIl7i5bPBg
CitedBy_id crossref_primary_10_1117_1_NPh_3_3_031410
crossref_primary_10_1134_S036211971603004X
crossref_primary_10_1038_s41598_019_54316_6
crossref_primary_10_1016_j_neuroimage_2013_07_079
crossref_primary_10_1186_s40101_015_0077_z
crossref_primary_10_3389_fnhum_2017_00462
crossref_primary_10_3389_fnhum_2018_00313
crossref_primary_10_1109_TBME_2018_2866550
crossref_primary_10_3389_fnins_2018_00695
crossref_primary_10_1109_TCDS_2021_3101897
crossref_primary_10_3389_fnins_2021_699428
crossref_primary_10_3389_fnhum_2017_00585
crossref_primary_10_1080_2326263X_2017_1304020
crossref_primary_10_1088_1741_2560_11_5_056010
crossref_primary_10_1109_TCDS_2020_3028785
crossref_primary_10_1109_TIM_2023_3279877
crossref_primary_10_1016_j_clinph_2023_12_008
crossref_primary_10_1109_TNSRE_2020_3030639
crossref_primary_10_3390_s22155865
crossref_primary_10_1186_s12984_025_01588_x
crossref_primary_10_1371_journal_pone_0129390
crossref_primary_10_1155_2017_3524208
crossref_primary_10_3389_fnins_2024_1406814
crossref_primary_10_3389_fnhum_2022_977776
crossref_primary_10_3390_audiolres12010001
crossref_primary_10_3389_fnhum_2015_00617
crossref_primary_10_3389_fnrgo_2024_1345507
crossref_primary_10_1155_2022_9935192
crossref_primary_10_3389_fnhum_2016_00250
crossref_primary_10_1016_j_neuroimage_2011_11_062
crossref_primary_10_1038_srep16438
crossref_primary_10_1016_j_bspc_2021_103209
crossref_primary_10_1088_1741_2560_12_3_036004
crossref_primary_10_3389_fnhum_2021_646915
crossref_primary_10_1146_annurev_psych_010213_115108
crossref_primary_10_3389_fnhum_2017_00359
crossref_primary_10_1016_j_compeleceng_2025_110189
crossref_primary_10_1016_j_jneumeth_2017_10_003
crossref_primary_10_1016_j_neuroimage_2019_06_021
crossref_primary_10_1109_TNSRE_2017_2684084
crossref_primary_10_1371_journal_pone_0187743
crossref_primary_10_3390_brainsci14101022
crossref_primary_10_1038_srep23083
crossref_primary_10_1016_j_medntd_2021_100064
crossref_primary_10_1016_j_neulet_2014_07_042
crossref_primary_10_5057_jjske_TJSKE_D_21_00085
crossref_primary_10_1371_journal_pone_0101729
crossref_primary_10_3934_mbe_2021392
crossref_primary_10_1016_j_neuroimage_2013_03_045
crossref_primary_10_1007_s10015_020_00592_9
crossref_primary_10_1038_sdata_2018_3
crossref_primary_10_3389_fnhum_2022_898300
crossref_primary_10_1117_1_JBO_19_2_026010
crossref_primary_10_1016_j_clinph_2013_02_118
crossref_primary_10_1026_1612_5010_a000184
crossref_primary_10_1053_j_jvca_2021_01_039
crossref_primary_10_3390_electronics9030422
crossref_primary_10_3389_fnbot_2017_00035
crossref_primary_10_1016_j_eswa_2023_119736
crossref_primary_10_1117_1_NPh_5_1_011008
crossref_primary_10_3917_anpsy_143_0537
crossref_primary_10_1109_TNSRE_2022_3154369
crossref_primary_10_1255_jnirs_1145
crossref_primary_10_1109_TMM_2013_2250267
crossref_primary_10_1007_s11571_023_09995_3
crossref_primary_10_1109_OJNANO_2022_3226603
crossref_primary_10_1109_TBME_2014_2369483
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_1371_journal_pone_0098322
crossref_primary_10_1177_1541931218621266
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1016_j_bspc_2024_106448
crossref_primary_10_1016_j_eswa_2017_04_042
crossref_primary_10_1016_j_bbr_2020_112829
crossref_primary_10_1016_j_neuroimage_2015_05_009
crossref_primary_10_1016_j_bspc_2018_03_010
crossref_primary_10_1016_j_jchemneu_2018_02_006
crossref_primary_10_1109_TBME_2016_2594127
crossref_primary_10_1007_s42235_024_00581_9
crossref_primary_10_1371_journal_pone_0146610
crossref_primary_10_1093_neuros_nyz286
crossref_primary_10_1007_s10916_015_0236_0
crossref_primary_10_1155_2017_5491296
crossref_primary_10_1007_s11431_020_1710_y
crossref_primary_10_4074_S0003503314003054
crossref_primary_10_12677_AP_2020_104058
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_3389_fnhum_2015_00003
crossref_primary_10_3389_fnbot_2017_00006
crossref_primary_10_1140_epjp_s13360_021_01516_7
crossref_primary_10_3390_s22166148
crossref_primary_10_3389_fnhum_2018_00479
crossref_primary_10_1371_journal_pone_0196359
crossref_primary_10_3989_egeol_42748_444
crossref_primary_10_1016_j_neuroimage_2013_03_028
crossref_primary_10_3390_s16040590
crossref_primary_10_1088_1741_2552_ab2706
crossref_primary_10_1088_1741_2552_ad0a02
crossref_primary_10_1080_10255842_2024_2333924
crossref_primary_10_1117_1_JBO_21_9_091315
crossref_primary_10_1080_21548455_2014_969357
crossref_primary_10_3389_fnins_2016_00352
crossref_primary_10_1109_TNNLS_2020_3048385
crossref_primary_10_1016_j_jneumeth_2018_11_017
crossref_primary_10_3390_bioengineering10121393
crossref_primary_10_1007_s12021_021_09538_3
crossref_primary_10_1007_s13534_014_0156_9
crossref_primary_10_17537_2018_13_84
crossref_primary_10_3390_brainsci10020085
crossref_primary_10_1109_JSEN_2022_3169492
crossref_primary_10_3389_fnhum_2020_599802
crossref_primary_10_1016_j_neuroimage_2014_04_008
crossref_primary_10_1007_s00521_021_06202_4
crossref_primary_10_1109_TNSRE_2022_3198970
crossref_primary_10_1049_iet_spr_2019_0297
crossref_primary_10_1109_TNSRE_2013_2292995
crossref_primary_10_1109_JSEN_2021_3119074
crossref_primary_10_3389_fnhum_2020_597864
crossref_primary_10_3390_brainsci11060713
crossref_primary_10_1088_1741_2552_ab0b7f
crossref_primary_10_32604_cmc_2022_018318
crossref_primary_10_3390_brainsci10100687
crossref_primary_10_1088_1741_2552_abf187
crossref_primary_10_1109_TNSRE_2012_2185514
crossref_primary_10_1109_TNSRE_2020_3017167
crossref_primary_10_1016_j_bspc_2021_102595
crossref_primary_10_1088_1741_2560_10_2_026002
crossref_primary_10_1109_TBME_2020_3014299
crossref_primary_10_3389_fpsyg_2015_00709
crossref_primary_10_1088_1741_2560_10_2_026005
crossref_primary_10_1177_0018720819845275
crossref_primary_10_1016_j_bspc_2021_102902
crossref_primary_10_1038_s41598_017_16639_0
crossref_primary_10_1088_1741_2552_abc903
crossref_primary_10_1142_S0129065718500314
crossref_primary_10_3390_s18061827
crossref_primary_10_1016_j_ajp_2017_02_009
crossref_primary_10_1063_1_4989791
crossref_primary_10_3390_bioengineering10050608
crossref_primary_10_1109_ACCESS_2023_3243699
crossref_primary_10_1016_j_bspc_2013_07_011
crossref_primary_10_1109_JPROC_2015_2425807
crossref_primary_10_3389_fnins_2020_00105
crossref_primary_10_1007_s11571_024_10159_0
crossref_primary_10_1038_srep36203
crossref_primary_10_1152_physrev_00027_2016
crossref_primary_10_1590_2446_4740_0777
crossref_primary_10_3390_e22070761
crossref_primary_10_1016_j_nicl_2021_102577
crossref_primary_10_1155_2017_6820482
crossref_primary_10_1155_2020_8167295
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_3389_fnrgo_2022_934234
crossref_primary_10_1016_j_bspc_2020_101990
crossref_primary_10_3389_fnhum_2018_00246
crossref_primary_10_1109_TNSRE_2016_2628057
crossref_primary_10_3389_fnhum_2018_00006
crossref_primary_10_3389_fnhum_2019_00357
crossref_primary_10_3389_fnins_2020_00584
crossref_primary_10_1109_ACCESS_2021_3074220
crossref_primary_10_3389_fnhum_2018_00362
crossref_primary_10_1097_NPT_0000000000000402
crossref_primary_10_1117_1_NPh_4_4_041411
crossref_primary_10_1007_s00500_012_0895_4
crossref_primary_10_1109_TNSRE_2016_2627809
crossref_primary_10_3389_fninf_2018_00033
crossref_primary_10_1371_journal_pone_0176674
crossref_primary_10_1007_s11055_018_0666_5
crossref_primary_10_1007_s40120_021_00300_0
crossref_primary_10_1364_BOE_413666
crossref_primary_10_1109_LSENS_2018_2879466
crossref_primary_10_1016_j_neurobiolaging_2016_10_011
crossref_primary_10_3389_fnhum_2017_00193
crossref_primary_10_1093_gigascience_giz002
crossref_primary_10_1371_journal_pone_0154878
crossref_primary_10_3109_17483107_2014_961569
crossref_primary_10_1080_0144929X_2021_1979655
crossref_primary_10_3389_fnhum_2017_00503
crossref_primary_10_52586_5020
crossref_primary_10_1177_0967033518787331
crossref_primary_10_3389_fnins_2014_00373
crossref_primary_10_1142_S0129065718500235
crossref_primary_10_1016_j_jneumeth_2014_06_029
crossref_primary_10_3390_app9183845
crossref_primary_10_1016_j_bspc_2016_09_005
crossref_primary_10_1016_j_bbe_2019_06_004
crossref_primary_10_3389_fnins_2020_00168
crossref_primary_10_1002_advs_202204746
crossref_primary_10_1080_2326263X_2015_1134958
crossref_primary_10_1088_1741_2552_adaf58
crossref_primary_10_1007_s00340_012_5103_9
crossref_primary_10_1007_s00221_013_3764_1
crossref_primary_10_1371_journal_pone_0121279
crossref_primary_10_1016_j_aei_2020_101153
crossref_primary_10_1109_RBME_2011_2170675
crossref_primary_10_1109_TCYB_2019_2939399
crossref_primary_10_1109_TNSRE_2019_2903685
crossref_primary_10_4304_jcp_9_7_1671_1677
crossref_primary_10_1016_j_bbr_2017_06_034
crossref_primary_10_1016_j_jneumeth_2015_01_033
crossref_primary_10_1016_j_compeleceng_2024_109619
crossref_primary_10_3390_app14188274
crossref_primary_10_3390_bioengineering11070695
crossref_primary_10_1016_j_neuroscience_2018_06_049
crossref_primary_10_3389_fnins_2022_1062889
crossref_primary_10_3389_fnhum_2018_00059
crossref_primary_10_1155_2020_1838140
crossref_primary_10_1016_j_bspc_2021_102668
crossref_primary_10_1364_BOE_7_003882
crossref_primary_10_5626_JCSE_2013_7_2_132
crossref_primary_10_1109_ACCESS_2020_2994226
crossref_primary_10_3389_fneur_2019_00058
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1109_JBHI_2022_3201111
crossref_primary_10_1016_j_jneumeth_2013_12_007
crossref_primary_10_1007_s12021_022_09595_2
crossref_primary_10_1016_j_cmpb_2020_105535
crossref_primary_10_1109_TBME_2013_2253608
crossref_primary_10_3389_fnhum_2014_00244
crossref_primary_10_3389_fnhum_2016_00629
crossref_primary_10_1088_1741_2552_aaaf82
crossref_primary_10_1109_TIM_2023_3276509
crossref_primary_10_1109_TNSRE_2020_3023116
crossref_primary_10_1016_j_biopsycho_2013_05_005
crossref_primary_10_3389_fnhum_2020_00236
crossref_primary_10_1109_JPROC_2015_2469106
crossref_primary_10_1371_journal_pone_0104854
crossref_primary_10_1016_j_patcog_2015_03_010
crossref_primary_10_1109_THMS_2019_2917194
crossref_primary_10_1371_journal_pone_0230491
crossref_primary_10_3389_fnins_2017_00756
crossref_primary_10_1007_s12028_014_0049_x
crossref_primary_10_1007_s10548_019_00740_w
crossref_primary_10_1016_j_medengphy_2013_08_009
crossref_primary_10_3389_fnhum_2019_00393
crossref_primary_10_1038_nrn_2016_164
crossref_primary_10_1089_brain_2017_0547
crossref_primary_10_1142_S0129065718500144
crossref_primary_10_32725_jab_2019_014
crossref_primary_10_1080_2326263X_2019_1698928
crossref_primary_10_1541_ieejeiss_143_178
crossref_primary_10_3389_fnhum_2016_00219
crossref_primary_10_1088_2057_1976_aab29a
crossref_primary_10_3390_s21186106
crossref_primary_10_1002_brb3_541
crossref_primary_10_1186_s12916_025_03846_0
crossref_primary_10_1088_1741_2552_aa814b
crossref_primary_10_3390_mi11070635
crossref_primary_10_1159_000371714
crossref_primary_10_1364_BOE_6_004063
crossref_primary_10_1155_2014_420561
crossref_primary_10_1007_s10278_020_00387_1
crossref_primary_10_1016_j_jbusres_2018_10_052
crossref_primary_10_3389_fnhum_2020_00113
crossref_primary_10_1109_TNSRE_2022_3149899
crossref_primary_10_1371_journal_pone_0131951
crossref_primary_10_3389_fphys_2015_00416
crossref_primary_10_1109_JPROC_2015_2411333
crossref_primary_10_1016_j_neuroimage_2016_01_019
crossref_primary_10_1016_j_tsc_2015_01_001
crossref_primary_10_3390_electronics8121486
crossref_primary_10_1109_JPROC_2015_2413993
crossref_primary_10_1016_j_jneumeth_2019_03_018
crossref_primary_10_1255_jnirs_1048
crossref_primary_10_1109_TNSRE_2015_2403270
crossref_primary_10_1016_j_bspc_2025_107570
crossref_primary_10_1016_j_physleta_2014_08_017
crossref_primary_10_3390_bios12121167
crossref_primary_10_1016_j_jneumeth_2014_05_024
crossref_primary_10_1038_s41598_017_15770_2
crossref_primary_10_1016_j_cogr_2021_02_001
crossref_primary_10_3389_fneur_2018_00350
crossref_primary_10_12677_CSA_2019_91006
crossref_primary_10_1016_j_neuroimage_2013_06_062
crossref_primary_10_1109_TNSRE_2023_3281855
crossref_primary_10_3389_fnhum_2019_00172
crossref_primary_10_1371_journal_pone_0074583
crossref_primary_10_1109_ACCESS_2016_2637409
crossref_primary_10_3233_JAD_201021
crossref_primary_10_5607_en_2018_27_6_453
crossref_primary_10_1088_1741_2552_aad46f
crossref_primary_10_1109_TBME_2014_2300492
crossref_primary_10_1177_1071181312561367
crossref_primary_10_1038_s41598_020_77015_z
crossref_primary_10_3390_s22030726
crossref_primary_10_3390_s24134161
crossref_primary_10_1016_j_oceaneng_2024_117346
crossref_primary_10_1016_j_bspc_2020_102304
crossref_primary_10_1016_j_neucom_2016_10_024
crossref_primary_10_3389_fnhum_2015_00308
crossref_primary_10_3389_fnhum_2023_1162712
crossref_primary_10_3389_fnagi_2022_810125
crossref_primary_10_1371_journal_pone_0049266
crossref_primary_10_3389_fnagi_2021_682683
crossref_primary_10_3934_mbe_2021344
crossref_primary_10_3389_fnhum_2021_721679
crossref_primary_10_1007_s13755_019_0081_5
crossref_primary_10_1007_s00521_019_04294_7
crossref_primary_10_1016_j_measurement_2016_12_001
crossref_primary_10_1109_ACCESS_2023_3289709
crossref_primary_10_1186_s12984_018_0365_z
crossref_primary_10_3389_fnrgo_2024_1355534
crossref_primary_10_1186_s12938_016_0181_2
crossref_primary_10_1111_psyp_12916
crossref_primary_10_1016_j_neuroimage_2013_12_035
crossref_primary_10_1155_2019_3807670
crossref_primary_10_1002_adbi_201700019
crossref_primary_10_1109_JPROC_2016_2577518
crossref_primary_10_1016_j_jneumeth_2014_04_016
crossref_primary_10_1016_j_compbiomed_2016_03_004
crossref_primary_10_1109_TNSRE_2018_2878045
crossref_primary_10_1371_journal_pone_0250431
crossref_primary_10_1109_JSEN_2024_3400006
crossref_primary_10_1007_s11055_018_0680_7
crossref_primary_10_3389_fninf_2018_00005
crossref_primary_10_3389_fpsyg_2022_833007
crossref_primary_10_3390_healthcare5020020
crossref_primary_10_3390_app8010149
crossref_primary_10_1109_ACCESS_2020_3018477
crossref_primary_10_9746_jcmsi_7_327
crossref_primary_10_1038_sc_2012_14
crossref_primary_10_1109_ACCESS_2017_2754325
crossref_primary_10_3390_brainsci11020210
crossref_primary_10_1177_1545968313520410
crossref_primary_10_3390_s24061889
Cites_doi 10.1088/1741-2560/4/3/007
10.1006/nimg.2002.1212
10.1016/j.neuroscience.2009.01.015
10.1016/j.neuroimage.2006.11.005
10.1007/s10994-009-5153-3
10.1097/00004647-199609000-00006
10.1016/j.neuroimage.2007.01.051
10.1088/0031-9155/51/5/N02
10.1016/0304-3940(93)90181-J
10.1002/hbm.20368
10.1016/S0079-6123(09)17719-1
10.1016/j.neunet.2009.06.003
10.1006/nimg.2002.1177
10.1007/s10548-009-0109-2
10.1038/35084005
10.1016/j.neuroimage.2011.03.061
10.1371/journal.pone.0000637
10.1088/1741-2560/6/1/016003
10.3171/jns.2007.106.3.495
10.1016/j.neuron.2010.03.001
10.1146/annurev.bb.02.060173.001105
10.1016/S0013-4694(98)00084-4
10.1109/TBME.2002.803536
10.1109/86.895946
10.1016/j.neuroimage.2010.11.004
10.1038/18581
10.3389/fnins.2011.00005
10.1088/1741-2560/3/1/R02
10.1016/j.neuroimage.2006.09.009
10.1162/NECO_a_00089
10.1109/TBME.2004.827088
10.1016/j.jneumeth.2007.10.001
10.1073/pnas.0913697107
10.1214/aoms/1177728730
10.1016/j.neuroimage.2009.01.033
10.1126/science.1174521
10.1088/1741-2560/8/2/025008
10.1016/S1388-2457(02)00057-3
10.1016/j.mri.2005.12.034
10.1515/BMT.2008.005
10.1007/978-1-4615-9510-6_21
10.1016/S1053-8119(03)00145-9
10.1088/0967-3334/25/4/003
10.1016/j.mri.2009.12.016
10.1109/TNSRE.2006.875555
10.1109/TNSRE.2006.875582
10.1073/pnas.89.12.5675
10.1016/j.neulet.2008.11.024
10.1097/01.wnr.0000133296.39160.fe
10.1088/1741-2560/8/2/025007
10.1523/JNEUROSCI.1246-09.2009
10.1016/j.ijpsycho.2007.10.004
10.1103/PhysRevLett.103.214101
10.1016/0013-4694(92)90133-3
10.1523/JNEUROSCI.5171-07.2008
10.1006/nimg.2000.0709
10.1111/j.2517-6161.1953.tb00135.x
10.1109/TNSRE.2006.875536
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 2, 2012
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 2, 2012
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2011.07.084
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database

ProQuest One Psychology
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 529
ExternalDocumentID 3244983621
21840399
10_1016_j_neuroimage_2011_07_084
S1053811911008792
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R42NS050007
– fundername: NINDS NIH HHS
  grantid: R44NS049734
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c606t-c44ca11f7be159a9465ab1c6e791b0eacffae6396a4f4dd25300029d8fea0eb33
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 14:12:41 EDT 2025
Fri Jul 11 09:04:18 EDT 2025
Wed Aug 13 09:45:49 EDT 2025
Mon Jul 21 05:44:46 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Sun Jul 06 05:04:09 EDT 2025
Fri Feb 23 02:20:30 EST 2024
Tue Aug 26 16:33:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hybrid BCI
Meta-classifier
Combined NIRS-EEG
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-c44ca11f7be159a9465ab1c6e791b0eacffae6396a4f4dd25300029d8fea0eb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811911008792
PMID 21840399
PQID 1506853021
PQPubID 2031077
PageCount 11
ParticipantIDs proquest_miscellaneous_902375715
proquest_miscellaneous_898843012
proquest_journals_1506853021
pubmed_primary_21840399
crossref_citationtrail_10_1016_j_neuroimage_2011_07_084
crossref_primary_10_1016_j_neuroimage_2011_07_084
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_084
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_084
PublicationCentury 2000
PublicationDate 2012-01-02
PublicationDateYYYYMMDD 2012-01-02
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Wartenburger, Steinbrink, Telkemeyer, Friedrich, Friederici, Obrig (bb0340) 2007; 34
Fazli, Grozea, Danoczy, Blankertz, Popescu, Müller (bb0095) 2009; 22
Miller, Schalk, Fetz, den Nijs, Ojemann, Rao (bb0210) 2010; 107
Hermes, Vansteensel, Albers, Bleichner, Benedictus, Orellana, Aarnoutse, Ramsey (bb0130) 2011; 8
Bauernfeind, Leeb, Wriessnegger, Pfurtscheller (bb0010) 2008; 53
Coyle, Ward, Markham, McDarby (bb0070) 2004; 25
Telkemeyer, Rossi, Koch, Nierhaus, Steinbrink, Poeppel, Obrig, Wartenburger (bb0310) 2009; 29
von Bünau, Meinecke, Király, Müller (bb0045) 2009; 103
Pistohl, Ball, Schulze-Bonhage, Aertsen, Mehring (bb0245) 2008; 167
Friston (bb0110) 2009; 326
Blankertz, Dornhege, Krauledat, Müller, Curio (bb0030) 2007; 37
Bießmann, Meinecke, Gretton, Rauch, Rainer, Logothetis, Müller (bb0015) 2010; 79
Tate (bb0305) 1954; 25
Herrmann, Huter, Plichta, Ehlis, Alpers, Muhlberger, Fallgatter (bb0135) 2008; 29
Fazli, Popescu, Danóczy, Blankertz, Müller, Grozea (bb0100) 2009; 22
Sugiyama, Krauledat, Müller (bb0295) 2007; 8
Wriessnegger, Kurzmann, Neuper (bb0355) 2008; 67
Leuthardt, Miller, Schalk, Rao, Ojemann (bb0185) 2006; 14
Takeuchi, Hori, Takamoto, Tran, Satoru, Ishikawa, Ono, Endo, Nishijo (bb0300) 2009; 22
Fukunaga (bb0115) 1990
Ramoser, Müller-Gerking, Pfurtscheller (bb0255) 2000; 8
Yoo, Fairneny, Chen, Choo, Panych, Park, Lee, Jolesz (bb0360) 2004; 15
Hotelling (bb0140) 1953; 15
Luu, Chau (bb0200) 2009; 6
Logothetis, Pauls, Augath, Trinath, Oeltermann (bb0195) 2001; 412
Cope, Delpy, Reynolds, Wray, Wyatt, van der Zee (bb0060) 1988; 222
Felton, Wilson, Williams, Garell (bb0105) 2007; 106
Abdelnour, Huppert (bb0005) 2009; 46
Steinbrink, Villringer, Kempf, Haux, Boden, Obrig (bb0290) 2006; 24
Shenoy, Krauledat, Blankertz, Rao, Müller (bb0275) 2006; 3
Dornhege, Blankertz, Curio, Müller (bb0075) 2004; 51
Waldert, Preissl, Demandt, Braun, Birbaumer, Aertsen, Mehring (bb0335) 2008; 28
Sorger, Dahmen, Reithler, Gosseries, Maudoux, Laureys, Goebel (bb0285) 2009; 177
Vidaurre, Sannelli, Müller, Blankertz (bb0325) 2011; 23
Fazli, Danóczy, Schelldorfer, Müller (bb0090) 2011; 56
Sitaram, Zhang, Guan, Thulasidas, Hoshi, Ishikawa, Shimizu, Birbaumer (bb0280) 2007; 34
Grozea, Voinescu, Fazli (bb0125) 2011; 8
Parra, Alvino, Tang, Pearlmutter, Yeung, Osman, Sajda (bb0225) 2002; 17
Villringer, Planck, Hock, Schleinkofer, Dirnagl (bb0330) 1993; 154
Lindauer, Royl, Leithner, Kühl, Gold, Gethmann, Kohl-Bareis, Villringer, Dirnagl (bb0190) 2001; 13
Weiskopf, Veit, Erb, Mathiak, Grodd, Goebel, Birbaumer (bb0345) 2003; 19
Kanoh, Murayama, Miyamoto, Yoshinobu, Kawashima (bb0145) 2009; 2009
Vidal (bb0320) 1973; 2
Kleinschmidt, Obrig, Requardt, Merboldt, Dirnagl, Villringer, Frahm (bb0150) 1996; 16
Birbaumer, Ghanayim, Hinterberger, Iversen, Kotchoubey, Kubler, Perelmouter, Taub, Flor (bb0025) 1999; 398
Obrig, Israel, Kohl-Bareis, Uludag, Wenzel, Muller, Arnold, Villringer (bb0220) 2002; 17
Ramsey, van de Heuvel, Kho, Leijten (bb0260) 2006; 14
Rossi, Jurgenson, Hanulikova, Telkemeyer, Wartenburger, Obrig (bb0265) 2010
Tsubone, Muroga, Wada (bb0315) 2007; 2007
Kwong, Belliveau, Chesler, Goldberg, Weisskoff, Poncelet, Kennedy, Hoppel, Cohen, Turner (bb0165) 1992; 89
Buttfield, Ferrez, Millan (bb0050) 2006; 14
Cheng, Gao, Gao, Xu (bb0055) 2002; 49
MacKay (bb0205) 2002
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bb0350) 2002; 113
(bb0080) 2007
Pfurtscheller, Allison, Brunner, Bauernfeind, Solis-Escalante, Scherer, Zander, Mueller-Putz, Neuper, Birbaumer (bb0235) 2010; 4
Brunner, Ritaccio, Emrich, Bischof, Schalk (bb0040) 2011; 5
Coyle, Ward, Markham (bb0065) 2007; 4
Leeb, Sagha, Chavarriaga, Del, Millan (bb0175) 2010; 1
Lemm, Dickhaus, Blankertz, Müller (bb0180) 2011; 56
Ehlis, Ringel, Plichta, Richter, Herrmann, Fallgatter (bb0085) 2009; 159
Lee, Ryu, Jolesz, Cho, Yoo (bb0170) 2009; 450
Pfurtscheller (bb0230) 1992; 83
Bießmann, Plis, Meinecke, Eichele, Müller (bb0020) 2011
Grossmann, Oberecker, Koch, Friederici (bb0120) 2010; 65
Sellers, Turner, Sarnacki, Mcmanus, Vaughan, Matthews (bb0270) 2009
Blankertz, Tomioka, Lemm, Kawanabe, Müller (bb0035) 2008
Koles, Soong (bb0160) 1998; 107
Popescu, Fazli, Badower, Blankertz, Müller (bb0250) 2007; 2
Kocsis, Herman, Eke (bb0155) 2006; 51
Murayama, Bießmann, Meinecke, Muller, Augath, Oeltermann, Logothetis (bb0215) 2010; 28
Wriessnegger (10.1016/j.neuroimage.2011.07.084_bb0355) 2008; 67
Vidaurre (10.1016/j.neuroimage.2011.07.084_bb0325) 2011; 23
Obrig (10.1016/j.neuroimage.2011.07.084_bb0220) 2002; 17
Steinbrink (10.1016/j.neuroimage.2011.07.084_bb0290) 2006; 24
Tate (10.1016/j.neuroimage.2011.07.084_bb0305) 1954; 25
Fazli (10.1016/j.neuroimage.2011.07.084_bb0100) 2009; 22
Wolpaw (10.1016/j.neuroimage.2011.07.084_bb0350) 2002; 113
Hermes (10.1016/j.neuroimage.2011.07.084_bb0130) 2011; 8
Cheng (10.1016/j.neuroimage.2011.07.084_bb0055) 2002; 49
Coyle (10.1016/j.neuroimage.2011.07.084_bb0065) 2007; 4
Luu (10.1016/j.neuroimage.2011.07.084_bb0200) 2009; 6
Leeb (10.1016/j.neuroimage.2011.07.084_bb0175) 2010; 1
Lindauer (10.1016/j.neuroimage.2011.07.084_bb0190) 2001; 13
Bießmann (10.1016/j.neuroimage.2011.07.084_bb0015) 2010; 79
Villringer (10.1016/j.neuroimage.2011.07.084_bb0330) 1993; 154
Pfurtscheller (10.1016/j.neuroimage.2011.07.084_bb0230) 1992; 83
Friston (10.1016/j.neuroimage.2011.07.084_bb0110) 2009; 326
Abdelnour (10.1016/j.neuroimage.2011.07.084_bb0005) 2009; 46
Blankertz (10.1016/j.neuroimage.2011.07.084_bb0035) 2008
Logothetis (10.1016/j.neuroimage.2011.07.084_bb0195) 2001; 412
Ehlis (10.1016/j.neuroimage.2011.07.084_bb0085) 2009; 159
Buttfield (10.1016/j.neuroimage.2011.07.084_bb0050) 2006; 14
Waldert (10.1016/j.neuroimage.2011.07.084_bb0335) 2008; 28
Pistohl (10.1016/j.neuroimage.2011.07.084_bb0245) 2008; 167
Rossi (10.1016/j.neuroimage.2011.07.084_bb0265) 2010
Pfurtscheller (10.1016/j.neuroimage.2011.07.084_bb0235) 2010; 4
Leuthardt (10.1016/j.neuroimage.2011.07.084_bb0185) 2006; 14
MacKay (10.1016/j.neuroimage.2011.07.084_bb0205) 2002
Miller (10.1016/j.neuroimage.2011.07.084_bb0210) 2010; 107
(10.1016/j.neuroimage.2011.07.084_bb0080) 2007
Fazli (10.1016/j.neuroimage.2011.07.084_bb0095) 2009; 22
Fazli (10.1016/j.neuroimage.2011.07.084_bb0090) 2011; 56
Kocsis (10.1016/j.neuroimage.2011.07.084_bb0155) 2006; 51
Murayama (10.1016/j.neuroimage.2011.07.084_bb0215) 2010; 28
Ramsey (10.1016/j.neuroimage.2011.07.084_bb0260) 2006; 14
Kwong (10.1016/j.neuroimage.2011.07.084_bb0165) 1992; 89
Bauernfeind (10.1016/j.neuroimage.2011.07.084_bb0010) 2008; 53
Felton (10.1016/j.neuroimage.2011.07.084_bb0105) 2007; 106
Cope (10.1016/j.neuroimage.2011.07.084_bb0060) 1988; 222
Kanoh (10.1016/j.neuroimage.2011.07.084_bb0145) 2009; 2009
Brunner (10.1016/j.neuroimage.2011.07.084_bb0040) 2011; 5
Shenoy (10.1016/j.neuroimage.2011.07.084_bb0275) 2006; 3
Hotelling (10.1016/j.neuroimage.2011.07.084_bb0140) 1953; 15
Vidal (10.1016/j.neuroimage.2011.07.084_bb0320) 1973; 2
Kleinschmidt (10.1016/j.neuroimage.2011.07.084_bb0150) 1996; 16
Koles (10.1016/j.neuroimage.2011.07.084_bb0160) 1998; 107
Fukunaga (10.1016/j.neuroimage.2011.07.084_bb0115) 1990
Lemm (10.1016/j.neuroimage.2011.07.084_bb0180) 2011; 56
Sitaram (10.1016/j.neuroimage.2011.07.084_bb0280) 2007; 34
Grossmann (10.1016/j.neuroimage.2011.07.084_bb0120) 2010; 65
Sorger (10.1016/j.neuroimage.2011.07.084_bb0285) 2009; 177
Telkemeyer (10.1016/j.neuroimage.2011.07.084_bb0310) 2009; 29
Herrmann (10.1016/j.neuroimage.2011.07.084_bb0135) 2008; 29
Takeuchi (10.1016/j.neuroimage.2011.07.084_bb0300) 2009; 22
Weiskopf (10.1016/j.neuroimage.2011.07.084_bb0345) 2003; 19
Blankertz (10.1016/j.neuroimage.2011.07.084_bb0030) 2007; 37
Dornhege (10.1016/j.neuroimage.2011.07.084_bb0075) 2004; 51
Grozea (10.1016/j.neuroimage.2011.07.084_bb0125) 2011; 8
Coyle (10.1016/j.neuroimage.2011.07.084_bb0070) 2004; 25
Popescu (10.1016/j.neuroimage.2011.07.084_bb0250) 2007; 2
von Bünau (10.1016/j.neuroimage.2011.07.084_bb0045) 2009; 103
Sellers (10.1016/j.neuroimage.2011.07.084_bb0270) 2009
Parra (10.1016/j.neuroimage.2011.07.084_bb0225) 2002; 17
Ramoser (10.1016/j.neuroimage.2011.07.084_bb0255) 2000; 8
Tsubone (10.1016/j.neuroimage.2011.07.084_bb0315) 2007; 2007
Bießmann (10.1016/j.neuroimage.2011.07.084_bb0020) 2011
Yoo (10.1016/j.neuroimage.2011.07.084_bb0360) 2004; 15
Birbaumer (10.1016/j.neuroimage.2011.07.084_bb0025) 1999; 398
Lee (10.1016/j.neuroimage.2011.07.084_bb0170) 2009; 450
Wartenburger (10.1016/j.neuroimage.2011.07.084_bb0340) 2007; 34
Sugiyama (10.1016/j.neuroimage.2011.07.084_bb0295) 2007; 8
References_xml – volume: 19
  start-page: 577
  year: 2003
  end-page: 586
  ident: bb0345
  article-title: Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data
  publication-title: NeuroImage
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: bb0255
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
– year: 2007
  ident: bb0080
  publication-title: Toward Brain–Computer Interfacing
– volume: 56
  start-page: 387
  year: 2011
  end-page: 399
  ident: bb0180
  article-title: Introduction to machine learning for brain imaging
  publication-title: NeuroImage
– volume: 326
  start-page: 399
  year: 2009
  end-page: 403
  ident: bb0110
  article-title: Modalities, modes, and models in functional neuroimaging
  publication-title: Science
– volume: 17
  start-page: 223
  year: 2002
  end-page: 230
  ident: bb0225
  article-title: Linear spatial integration for single-trial detection in encephalography
  publication-title: NeuroImage
– volume: 1
  start-page: 4343
  year: 2010
  end-page: 4346
  ident: bb0175
  article-title: Multimodal fusion of muscle and brain signals for a hybrid-BCI
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 67
  start-page: 54
  year: 2008
  end-page: 63
  ident: bb0355
  article-title: Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study
  publication-title: Int. J. Psychophysiol.
– volume: 398
  start-page: 297
  year: 1999
  end-page: 298
  ident: bb0025
  article-title: A spelling device for the paralysed
  publication-title: Nature
– volume: 14
  start-page: 194
  year: 2006
  end-page: 198
  ident: bb0185
  article-title: Electrocorticography-based brain computer interface—the Seattle experience
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
– volume: 14
  start-page: 214
  year: 2006
  end-page: 217
  ident: bb0260
  article-title: Towards human BCI applications based on cognitive brain systems: an investigation of neural signals recorded from the dorsolateral prefrontal cortex
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 4
  start-page: 42
  year: 2010
  ident: bb0235
  article-title: The Hybrid BCI
  publication-title: Front. Neurosci.
– volume: 2009
  start-page: 594
  year: 2009
  end-page: 597
  ident: bb0145
  article-title: A NIRS-based brain–computer interface system during motor imagery: system development and online feedback training
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 107
  start-page: 343
  year: 1998
  end-page: 352
  ident: bb0160
  article-title: EEG source localization: implementing the spatio-temporal decomposition approach
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 167
  start-page: 105
  year: 2008
  end-page: 114
  ident: bb0245
  article-title: Prediction of arm movement trajectories from ECoG-recordings in humans
  publication-title: J. Neurosci. Methods
– volume: 15
  start-page: 193
  year: 1953
  end-page: 232
  ident: bb0140
  article-title: New light on the correlation coefficient and its transforms
  publication-title: J. R. Stat. Soc. B Methodol.
– volume: 103
  start-page: 214101
  year: 2009
  ident: bb0045
  article-title: Finding stationary subspaces in multivariate time series
  publication-title: Phys. Rev. Lett.
– volume: 56
  start-page: 2100
  year: 2011
  end-page: 2108
  ident: bb0090
  article-title:
  publication-title: NeuroImage
– volume: 412
  start-page: 150
  year: 2001
  end-page: 157
  ident: bb0195
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
– volume: 22
  start-page: 197
  year: 2009
  end-page: 214
  ident: bb0300
  article-title: Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation
  publication-title: Brain Topogr.
– volume: 37
  start-page: 539
  year: 2007
  end-page: 550
  ident: bb0030
  article-title: The non-invasive Berlin Brain–Computer Interface: fast acquisition of effective performance in untrained subjects
  publication-title: NeuroImage
– volume: 34
  start-page: 1416
  year: 2007
  end-page: 1427
  ident: bb0280
  article-title: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface
  publication-title: NeuroImage
– volume: 15
  start-page: 1591
  year: 2004
  end-page: 1595
  ident: bb0360
  article-title: Brain–computer interface using fMRI: spatial navigation by thoughts
  publication-title: Neuroreport
– volume: 14
  start-page: 164
  year: 2006
  end-page: 168
  ident: bb0050
  article-title: Towards a robust BCI: error potentials and online learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 34
  start-page: 416
  year: 2007
  end-page: 425
  ident: bb0340
  article-title: The processing of prosody: Evidence of interhemispheric specialization at the age of four
  publication-title: NeuroImage
– volume: 51
  start-page: 993
  year: 2004
  end-page: 1002
  ident: bb0075
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 025008
  year: 2011
  ident: bb0125
  article-title: Bristle-sensors — low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications
  publication-title: J. Neural Eng.
– volume: 23
  start-page: 791
  year: 2011
  end-page: 816
  ident: bb0325
  article-title: Machine-learning-based coadaptive calibration for brain–computer interfaces
  publication-title: Neural Comput.
– year: 2002
  ident: bb0205
  article-title: Information Theory, Inference & Learning Algorithms
– volume: 22
  start-page: 513
  year: 2009
  end-page: 521
  ident: bb0095
  article-title: Subject independent EEG-based BCI decoding
  publication-title: Advances in Neural Information Processing Systems
– volume: 29
  start-page: 14726
  year: 2009
  end-page: 14733
  ident: bb0310
  article-title: Sensitivity of newborn auditory cortex to the temporal structure of sounds
  publication-title: J. Neurosci.
– start-page: 623
  year: 2009
  end-page: 631
  ident: bb0270
  article-title: A novel dry electrode for brain–computer interface
  publication-title: Proceedings of the 13th International Conference on Human–Computer Interaction. Part II
– volume: 6
  start-page: 016003
  year: 2009
  ident: bb0200
  article-title: Decoding subjective preference from single-trial near-infrared spectroscopy signals
  publication-title: J. Neural. Eng.
– volume: 16
  start-page: 817
  year: 1996
  end-page: 826
  ident: bb0150
  article-title: Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 53
  start-page: 36
  year: 2008
  end-page: 43
  ident: bb0010
  article-title: Development, set-up and first results for a one-channel near-infrared spectroscopy system
  publication-title: Biomed. Tech. (Berl.)
– volume: 25
  start-page: 815
  year: 2004
  end-page: 822
  ident: bb0070
  article-title: On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces
  publication-title: Physiol. Meas.
– volume: 65
  start-page: 852
  year: 2010
  end-page: 858
  ident: bb0120
  article-title: The developmental origins of voice processing in the human brain
  publication-title: Neuron
– volume: 51
  start-page: N91
  year: 2006
  end-page: N98
  ident: bb0155
  article-title: The modified Beer–Lambert law revisited
  publication-title: Phys. Med. Biol.
– volume: 79
  start-page: 5
  year: 2010
  end-page: 27
  ident: bb0015
  article-title: Temporal kernel CCA and its application in multimodal neuronal data analysis
  publication-title: Mach. Learn.
– volume: 8
  start-page: 985
  year: 2007
  end-page: 1005
  ident: bb0295
  article-title: Covariate shift adaptation by importance weighted cross validation
  publication-title: J. Mach. Learn. Res.
– volume: 154
  start-page: 101
  year: 1993
  end-page: 104
  ident: bb0330
  article-title: Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults
  publication-title: Neurosci. Lett.
– volume: 29
  start-page: 28
  year: 2008
  end-page: 35
  ident: bb0135
  article-title: Enhancement of activity of the primary visual cortex during processing of emotional stimuli as measured with event-related functional near-infrared spectroscopy and event-related potentials
  publication-title: Hum. Brain Mapp.
– volume: 89
  start-page: 5675
  year: 1992
  end-page: 5679
  ident: bb0165
  article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 581
  year: 2008
  end-page: 607
  ident: bb0035
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process Mag.
– year: 1990
  ident: bb0115
  article-title: Introduction to statistical pattern recognition
– year: 2011
  ident: bb0020
  article-title: Analysis of multimodal neuroimaging data
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 46
  start-page: 133
  year: 2009
  end-page: 143
  ident: bb0005
  article-title: Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model
  publication-title: NeuroImage
– volume: 8
  start-page: 025007
  year: 2011
  ident: bb0130
  article-title: Functional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfaces
  publication-title: J. Neural. Eng.
– volume: 222
  start-page: 183
  year: 1988
  end-page: 189
  ident: bb0060
  article-title: Methods of quantitating cerebral near infrared spectroscopy data
  publication-title: Adv. Exp. Med. Biol.
– volume: 24
  start-page: 495
  year: 2006
  end-page: 505
  ident: bb0290
  article-title: Illuminating the BOLD signal: combined fMRI–fNIRS studies
  publication-title: Magn. Reson. Imaging
– volume: 159
  start-page: 1032
  year: 2009
  end-page: 1043
  ident: bb0085
  article-title: Cortical correlates of auditory sensory gating: a simultaneous near-infrared spectroscopy event-related potential study
  publication-title: Neuroscience
– volume: 49
  start-page: 1181
  year: 2002
  end-page: 1186
  ident: bb0055
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 450
  start-page: 1
  year: 2009
  end-page: 6
  ident: bb0170
  article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm
  publication-title: Neurosci. Lett.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bb0350
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 25
  start-page: 603
  year: 1954
  end-page: 607
  ident: bb0305
  article-title: Correlation between a discrete and a continuous variable. Point-biserial correlation
  publication-title: Ann. Math. Stat.
– volume: 28
  start-page: 1095
  year: 2010
  end-page: 1103
  ident: bb0215
  article-title: Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA
  publication-title: Magn. Reson. Imaging
– volume: 107
  start-page: 4430
  year: 2010
  end-page: 4435
  ident: bb0210
  article-title: Cortical activity during motor execution, motor imagery, and imagery-based online feedback
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 988
  year: 2001
  end-page: 1001
  ident: bb0190
  article-title: No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation
  publication-title: NeuroImage
– volume: 22
  start-page: 1305
  year: 2009
  end-page: 1315
  ident: bb0100
  article-title: Subject independent mental state classification in single trials
  publication-title: Neural. Netw.
– volume: 2007
  start-page: 5342
  year: 2007
  end-page: 5345
  ident: bb0315
  article-title: Application to robot control using brain function measurement by near-infrared spectroscopy
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 28
  start-page: 1000
  year: 2008
  end-page: 1008
  ident: bb0335
  article-title: Hand movement direction decoded from MEG and EEG
  publication-title: J. Neurosci.
– volume: 5
  start-page: 5
  year: 2011
  ident: bb0040
  article-title: Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG)
  publication-title: Front. Neurosci.
– start-page: 1752
  year: 2010
  end-page: 1764
  ident: bb0265
  article-title: Implicit processing of phonotactic cues: evidence from electrophysiological and vascular responses
  publication-title: J. Cogn. Neurosci.
– volume: 3
  start-page: R13
  year: 2006
  ident: bb0275
  article-title: Towards adaptive classification for BCI
  publication-title: J. Neural Eng.
– volume: 83
  start-page: 62
  year: 1992
  end-page: 69
  ident: bb0230
  article-title: Event-related synchronization (ers): an electrophysiological correlate of cortical areas at rest
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 4
  start-page: 219
  year: 2007
  end-page: 226
  ident: bb0065
  article-title: Brain–computer interface using a simplified functional near-infrared spectroscopy system
  publication-title: J. Neural. Eng.
– volume: 177
  start-page: 275
  year: 2009
  end-page: 292
  ident: bb0285
  article-title: Another kind of ‘BOLD Response’: answering multiple-choice questions via online decoded single-trial brain signals
  publication-title: Prog. Brain Res.
– volume: 2
  start-page: 157
  year: 1973
  end-page: 180
  ident: bb0320
  article-title: Toward direct brain–computer communication
  publication-title: Annu. Rev. Biophys. Bioeng.
– volume: 106
  start-page: 495
  year: 2007
  end-page: 500
  ident: bb0105
  article-title: Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases
  publication-title: J. Neurosurg.
– volume: 17
  start-page: 1
  year: 2002
  end-page: 18
  ident: bb0220
  article-title: Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult
  publication-title: NeuroImage
– volume: 2
  start-page: e637
  year: 2007
  ident: bb0250
  article-title: Single trial classification of motor imagination using 6 dry EEG electrodes
  publication-title: PLoS One
– volume: 4
  start-page: 219
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0065
  article-title: Brain–computer interface using a simplified functional near-infrared spectroscopy system
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/4/3/007
– volume: 17
  start-page: 223
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.084_bb0225
  article-title: Linear spatial integration for single-trial detection in encephalography
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1212
– volume: 159
  start-page: 1032
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0085
  article-title: Cortical correlates of auditory sensory gating: a simultaneous near-infrared spectroscopy event-related potential study
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2009.01.015
– volume: 34
  start-page: 1416
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0280
  article-title: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.11.005
– year: 2002
  ident: 10.1016/j.neuroimage.2011.07.084_bb0205
– volume: 79
  start-page: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.084_bb0015
  article-title: Temporal kernel CCA and its application in multimodal neuronal data analysis
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-009-5153-3
– volume: 16
  start-page: 817
  year: 1996
  ident: 10.1016/j.neuroimage.2011.07.084_bb0150
  article-title: Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-199609000-00006
– volume: 37
  start-page: 539
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0030
  article-title: The non-invasive Berlin Brain–Computer Interface: fast acquisition of effective performance in untrained subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.01.051
– volume: 51
  start-page: N91
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.084_bb0155
  article-title: The modified Beer–Lambert law revisited
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/5/N02
– volume: 154
  start-page: 101
  year: 1993
  ident: 10.1016/j.neuroimage.2011.07.084_bb0330
  article-title: Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(93)90181-J
– volume: 29
  start-page: 28
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.084_bb0135
  article-title: Enhancement of activity of the primary visual cortex during processing of emotional stimuli as measured with event-related functional near-infrared spectroscopy and event-related potentials
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20368
– volume: 177
  start-page: 275
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0285
  article-title: Another kind of ‘BOLD Response’: answering multiple-choice questions via online decoded single-trial brain signals
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(09)17719-1
– volume: 2009
  start-page: 594
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0145
  article-title: A NIRS-based brain–computer interface system during motor imagery: system development and online feedback training
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 2007
  start-page: 5342
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0315
  article-title: Application to robot control using brain function measurement by near-infrared spectroscopy
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 22
  start-page: 1305
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0100
  article-title: Subject independent mental state classification in single trials
  publication-title: Neural. Netw.
  doi: 10.1016/j.neunet.2009.06.003
– volume: 17
  start-page: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.084_bb0220
  article-title: Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1177
– volume: 8
  start-page: 985
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0295
  article-title: Covariate shift adaptation by importance weighted cross validation
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 197
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0300
  article-title: Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-009-0109-2
– volume: 412
  start-page: 150
  year: 2001
  ident: 10.1016/j.neuroimage.2011.07.084_bb0195
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
  doi: 10.1038/35084005
– volume: 56
  start-page: 2100
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.084_bb0090
  article-title: ℓ1-penalized linear mixed-effects models for high dimensional data with application to BCI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.061
– volume: 2
  start-page: e637
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0250
  article-title: Single trial classification of motor imagination using 6 dry EEG electrodes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000637
– volume: 6
  start-page: 016003
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0200
  article-title: Decoding subjective preference from single-trial near-infrared spectroscopy signals
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/6/1/016003
– year: 2011
  ident: 10.1016/j.neuroimage.2011.07.084_bb0020
  article-title: Analysis of multimodal neuroimaging data
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 106
  start-page: 495
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0105
  article-title: Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2007.106.3.495
– volume: 65
  start-page: 852
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.084_bb0120
  article-title: The developmental origins of voice processing in the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.001
– volume: 4
  start-page: 42
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.084_bb0235
  article-title: The Hybrid BCI
  publication-title: Front. Neurosci.
– volume: 2
  start-page: 157
  year: 1973
  ident: 10.1016/j.neuroimage.2011.07.084_bb0320
  article-title: Toward direct brain–computer communication
  publication-title: Annu. Rev. Biophys. Bioeng.
  doi: 10.1146/annurev.bb.02.060173.001105
– volume: 107
  start-page: 343
  year: 1998
  ident: 10.1016/j.neuroimage.2011.07.084_bb0160
  article-title: EEG source localization: implementing the spatio-temporal decomposition approach
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00084-4
– volume: 49
  start-page: 1181
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.084_bb0055
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.803536
– volume: 8
  start-page: 441
  year: 2000
  ident: 10.1016/j.neuroimage.2011.07.084_bb0255
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 1
  start-page: 4343
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.084_bb0175
  article-title: Multimodal fusion of muscle and brain signals for a hybrid-BCI
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 56
  start-page: 387
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.084_bb0180
  article-title: Introduction to machine learning for brain imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.004
– volume: 398
  start-page: 297
  year: 1999
  ident: 10.1016/j.neuroimage.2011.07.084_bb0025
  article-title: A spelling device for the paralysed
  publication-title: Nature
  doi: 10.1038/18581
– volume: 5
  start-page: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.084_bb0040
  article-title: Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG)
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2011.00005
– volume: 3
  start-page: R13
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.084_bb0275
  article-title: Towards adaptive classification for BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/1/R02
– volume: 34
  start-page: 416
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0340
  article-title: The processing of prosody: Evidence of interhemispheric specialization at the age of four
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.009
– volume: 23
  start-page: 791
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.084_bb0325
  article-title: Machine-learning-based coadaptive calibration for brain–computer interfaces
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00089
– volume: 51
  start-page: 993
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.084_bb0075
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827088
– volume: 167
  start-page: 105
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.084_bb0245
  article-title: Prediction of arm movement trajectories from ECoG-recordings in humans
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.10.001
– volume: 107
  start-page: 4430
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.084_bb0210
  article-title: Cortical activity during motor execution, motor imagery, and imagery-based online feedback
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913697107
– volume: 25
  start-page: 603
  year: 1954
  ident: 10.1016/j.neuroimage.2011.07.084_bb0305
  article-title: Correlation between a discrete and a continuous variable. Point-biserial correlation
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177728730
– volume: 46
  start-page: 133
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0005
  article-title: Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.033
– volume: 326
  start-page: 399
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0110
  article-title: Modalities, modes, and models in functional neuroimaging
  publication-title: Science
  doi: 10.1126/science.1174521
– volume: 8
  start-page: 025008
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.084_bb0125
  article-title: Bristle-sensors — low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025008
– volume: 113
  start-page: 767
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.084_bb0350
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 24
  start-page: 495
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.084_bb0290
  article-title: Illuminating the BOLD signal: combined fMRI–fNIRS studies
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2005.12.034
– volume: 53
  start-page: 36
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.084_bb0010
  article-title: Development, set-up and first results for a one-channel near-infrared spectroscopy system
  publication-title: Biomed. Tech. (Berl.)
  doi: 10.1515/BMT.2008.005
– volume: 222
  start-page: 183
  year: 1988
  ident: 10.1016/j.neuroimage.2011.07.084_bb0060
  article-title: Methods of quantitating cerebral near infrared spectroscopy data
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4615-9510-6_21
– volume: 19
  start-page: 577
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.084_bb0345
  article-title: Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00145-9
– volume: 22
  start-page: 513
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0095
  article-title: Subject independent EEG-based BCI decoding
– volume: 25
  start-page: 815
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.084_bb0070
  article-title: On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/25/4/003
– volume: 28
  start-page: 1095
  issue: 8
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.084_bb0215
  article-title: Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2009.12.016
– start-page: 581
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.084_bb0035
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process Mag.
– volume: 14
  start-page: 164
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.084_bb0050
  article-title: Towards a robust BCI: error potentials and online learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875555
– volume: 14
  start-page: 214
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.084_bb0260
  article-title: Towards human BCI applications based on cognitive brain systems: an investigation of neural signals recorded from the dorsolateral prefrontal cortex
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875582
– volume: 89
  start-page: 5675
  year: 1992
  ident: 10.1016/j.neuroimage.2011.07.084_bb0165
  article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.89.12.5675
– volume: 450
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0170
  article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2008.11.024
– volume: 15
  start-page: 1591
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.084_bb0360
  article-title: Brain–computer interface using fMRI: spatial navigation by thoughts
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000133296.39160.fe
– volume: 8
  start-page: 025007
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.084_bb0130
  article-title: Functional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfaces
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/8/2/025007
– volume: 29
  start-page: 14726
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0310
  article-title: Sensitivity of newborn auditory cortex to the temporal structure of sounds
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1246-09.2009
– year: 2007
  ident: 10.1016/j.neuroimage.2011.07.084_bb0080
– start-page: 1752
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.084_bb0265
  article-title: Implicit processing of phonotactic cues: evidence from electrophysiological and vascular responses
  publication-title: J. Cogn. Neurosci.
– volume: 67
  start-page: 54
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.084_bb0355
  article-title: Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2007.10.004
– volume: 103
  start-page: 214101
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0045
  article-title: Finding stationary subspaces in multivariate time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.214101
– volume: 83
  start-page: 62
  year: 1992
  ident: 10.1016/j.neuroimage.2011.07.084_bb0230
  article-title: Event-related synchronization (ers): an electrophysiological correlate of cortical areas at rest
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(92)90133-3
– volume: 28
  start-page: 1000
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.084_bb0335
  article-title: Hand movement direction decoded from MEG and EEG
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5171-07.2008
– volume: 13
  start-page: 988
  year: 2001
  ident: 10.1016/j.neuroimage.2011.07.084_bb0190
  article-title: No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0709
– volume: 15
  start-page: 193
  year: 1953
  ident: 10.1016/j.neuroimage.2011.07.084_bb0140
  article-title: New light on the correlation coefficient and its transforms
  publication-title: J. R. Stat. Soc. B Methodol.
  doi: 10.1111/j.2517-6161.1953.tb00135.x
– volume: 14
  start-page: 194
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.084_bb0185
  article-title: Electrocorticography-based brain computer interface—the Seattle experience
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875536
– start-page: 623
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.084_bb0270
  article-title: A novel dry electrode for brain–computer interface
– year: 1990
  ident: 10.1016/j.neuroimage.2011.07.084_bb0115
SSID ssj0009148
Score 2.5622153
Snippet Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 519
SubjectTerms Adult
Brain
Brain - physiology
Combined NIRS-EEG
Electroencephalography
Electroencephalography - methods
Experiments
Humans
Hybrid BCI
Image Interpretation, Computer-Assisted
Imagination - physiology
Infrared imaging systems
Meta-classifier
NMR
Nuclear magnetic resonance
Signal Processing, Computer-Assisted
Spectroscopy, Near-Infrared - methods
Studies
User-Computer Interface
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gSIgL4k1hoBy4BtYubVJxQIAGAwkOPKTdojwFCLrBxmH_HqdN1wugnVurlRM7n2P7M0JHmhqe09QQ1rUWAhTjSG6NJVopBtGDlon2jcJ391n_md4O0kG4cBuHssraJ5aO2gy1vyM_8Ux43I-4ic9Gn8RPjfLZ1TBCYxEteeoyX9LFBqwh3Y1p1QqXdgmHF0IlT1XfVfJFvn6A1QYiT3Zccpz-fjz9BT_LY-hqDa0G_IjPqwVfRwu22EDLdyFDvokuesVLmdTHo6YlAKsplvhl6ruz8P3NwyPp9a6x8tMhsA5jHbAnjvhyUtst9HzVe7rskzAngWgIPyZEU6plHDumLIATmdMslSrWmWV5rDrgWZ2TFpBIJqmjxiSgRZ-MM9xZ2YFguruNWsWwsLsIZ0Y5CNCs5ob62XOSMedUxrtUw1pSFyFWq0foQCLuZ1m8i7pa7E00ihVesaLDBCg2QvFMclQRacwhk9crIOpGUXBtArz9HLKnM9kAJiqQMKd0u15wEYx6LJotGCE8ewzm6HMssrDD77HgOecUnGby9ys5wCSWsjiN0E61lWYKKeNtgIx7_39-H63AvyblTVDSRq3J17c9AGw0UYelAfwAmeEOuA
  priority: 102
  providerName: ProQuest
Title Enhanced performance by a hybrid NIRS–EEG brain computer interface
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811911008792
https://dx.doi.org/10.1016/j.neuroimage.2011.07.084
https://www.ncbi.nlm.nih.gov/pubmed/21840399
https://www.proquest.com/docview/1506853021
https://www.proquest.com/docview/898843012
https://www.proquest.com/docview/902375715
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQSFUvFbS0XaDIh17DbhInjsUJtqFLCyu0FGlvln_FojasYDlwQbwDb8iTMJM4u6pUpJV6iZWfkayx_XkmnvmGkK-G2UKwzEY8dQ4cFOsj4ayLjNYcvAejEoOJwqfDfHDBfoyz8Qrpt7kwGFYZsL_B9Bqtw5Nu0GZ3Opl0z8EygO0G_A3kp-ECcZgxjrN872ER5iFi1qTDZWmEX4donibGq-aMnPyBlRvIPPlezXP67y3qNRO03oqO1sm7YEPSg6abG2TFVe_Jm9NwSv6BfCury_pgn04XaQFU31NFL-8xQ4sOj0fnz49PZfmdaqwRQU0o7kCRPuLGK-M2ycVR-as_iEK1hMiAEzKLDGNGxbHn2oGJogTLM6VjkzsuYt0DfPVeObBHcsU8szbJUkRDYQvvVA9c6vQjWa2uK_eZ0NxqD26aM4VlWIFOce69zouUGRhR5juEtwqSJlCJY0WL37KNGbuSC9VKVK3scQmq7ZB4Ljlt6DSWkBHtGMg2XRQATgLmLyG7P5f9a1otKb3TDrkMS_tWIiVjgbWW4g6h89ewKPGkRVXu-u5WFqIoGEBn8vonAowlnvE465BPzWSaK6T2usFw3Pqvzm-Tt3CX1L-Lkh2yOru5c1_AgJrp3XqFwJWP-S5ZO-iPTs6wPf45GEJ7WA7PRi-QvyGf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeBAnuAoyFrr71rIYQouCS0iVBppd62-1RB4IQmFcqf4jcya6-TC0W59GyP15qdncfO4wN4YZgVJcttwjPnMECxPimddYnRmmP0YFRqQqPweFIMj9nnk_xkC_50vTChrLLTiY2itlMT7shfh0l4IkDc0HezX0lAjQrZ1Q5CoxWLfbf8jSHb_O3oI-7vyzTdq44-DJOIKpAYdNYXiWHMKEo91w5NuSpZkStNTeF4SfUA9ZD3yqHdLhTzzNoU1wypKyu8UwMMPTP87jXYZhmGMj3Y3q0mXw7XY34pa5vv8iwRlJaxdqitKGsmVH77iXoijg7lr5qpqv82iJc5vI3h27sNt6LHSt63InYHtlx9F66PY07-HuxW9VlTRkBm6yYEopdEkbNl6Acjk9Hh16SqPhEd8CiIiUASJIyqOPfKuPtwfCU8fAC9elq7R0AKqz2GhM4IywLaneLce12IjBmUHub7wDv2SBPHlgf0jB-yq0_7LteMlYGxcsAlMrYPdEU5a0d3bEBTdjsgu9ZUVKYS7csGtG9WtNF9ad2SDal3ug2XUY3M5Vro-0BWj1EBhKyOqt30Yi5FKQRDNZ1e_kqJjhnPOc378LAVpRVDmggfndTH_1_-OdwYHo0P5MFosv8EbuJ_p809VLoDvcX5hXuKntlCP4vHgcDpVZ_Av8_STnk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVcEG8CBXyAo2m86117hRACmtBQGiGgUm7GT5WqbEKTCuWv8esY73qTC0W59Lw769V4PPON5wXw3HInK144KnLv0UFxgVbeeWqNEeg9WJ3ZWCh8NC4PjvnHSTHZgj9dLUxMq-x0YqOo3dTGO_K92AlPxhE3bC-ktIjP-8M3s180TpCKkdZunEYrIod--Rvdt_nr0T7u9YssGw6-vT-gacIAtQjcF9RybjVjQRiPZl1XvCy0Ybb0omKmjzopBO3RhpeaB-5chuvHMJaTwes-uqE5fvcaXBd5weIZExOxbvjLeFuGV-RUMlalLKI2t6zpVfnjJ2qM1ERUvGz6q_7bNF4GfRsTOLwFNxN2JW9bYbsNW76-AztHKTp_F94N6pMmoYDM1uUIxCyJJifLWBlGxqMvX-lg8IGYOJmC2DRSgsSmFedBW38Pjq-Eg_dhu57W_iGQ0pmAzqG30vE4904LEYIpZc4tyhEPPRAde5RNDczjHI0z1WWqnao1Y1VkrOoLhYztAVtRztomHhvQVN0OqK5IFdWqQkuzAe2rFW0CMi1A2ZB6t9twlRTKXK3Fvwdk9RhVQYzv6NpPL-ZKVlJyVNjZ5a9UCNFEIVjRgwetKK0Y0vj6CFcf_X_5Z7CD5059Go0PH8MN_O2suZDKdmF7cX7hnyBEW5inzVkg8P2qD99fkcFRSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+performance+by+a+hybrid+NIRS-EEG+brain+computer+interface&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Fazli%2C+Siamac&rft.au=Mehnert%2C+Jan&rft.au=Steinbrink%2C+Jens&rft.au=Curio%2C+Gabriel&rft.date=2012-01-02&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=59&rft.issue=1&rft.spage=519&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.084&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon