Enhanced performance by a hybrid NIRS–EEG brain computer interface
Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance t...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 519 - 529 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.01.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm (SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the classification of NIRS data can complement ongoing real-time EEG classification. Our results show that simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor imagery in over 90% of considered subjects and increases performance by 5% on average (p<0:01). However, the long time delay of the hemodynamic response may hinder an overall increase of bit-rates. Furthermore we find that EEG and NIRS complement each other in terms of information content and are thus a viable multimodal imaging technique, suitable for BCI.
► We use multi-modal imaging (whole-head NIRS and EEG) for sensory motor rhythm based BCI. ► By the use of meta-classifiers we enhance performance by 5% on average. ► Some subjects, previously not able to operate a BCI, now become able to do so. ► NIRS and EEG have different information content and complement each other. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1053-8119 1095-9572 1095-9572 |
DOI: | 10.1016/j.neuroimage.2011.07.084 |