Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics

Large-scale metabolite annotation is a challenge in liquid chromatogram-mass spectrometry (LC-MS)-based untargeted metabolomics. Here, we develop a metabolic reaction network (MRN)-based recursive algorithm (MetDNA) that expands metabolite annotations without the need for a comprehensive standard sp...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; p. 1516
Main Authors Shen, Xiaotao, Wang, Ruohong, Xiong, Xin, Yin, Yandong, Cai, Yuping, Ma, Zaijun, Liu, Nan, Zhu, Zheng-Jiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.04.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large-scale metabolite annotation is a challenge in liquid chromatogram-mass spectrometry (LC-MS)-based untargeted metabolomics. Here, we develop a metabolic reaction network (MRN)-based recursive algorithm (MetDNA) that expands metabolite annotations without the need for a comprehensive standard spectral library. MetDNA is based on the rationale that seed metabolites and their reaction-paired neighbors tend to share structural similarities resulting in similar MS2 spectra. MetDNA characterizes initial seed metabolites using a small library of MS2 spectra, and utilizes their experimental MS2 spectra as surrogate spectra to annotate their reaction-paired neighbor metabolites, which subsequently serve as the basis for recursive analysis. Using different LC-MS platforms, data acquisition methods, and biological samples, we showcase the utility and versatility of MetDNA and demonstrate that about 2000 metabolites can cumulatively be annotated from one experiment. Our results demonstrate that MetDNA substantially expands metabolite annotation, enabling quantitative assessment of metabolic pathways and facilitating integrative multi-omics analysis. Untargeted metabolomics detects large numbers of metabolites but their annotation remains challenging. Here, the authors develop a metabolic reaction network-based recursive algorithm that expands metabolite annotation by taking advantage of the mass spectral similarity of reaction-paired neighbor metabolites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09550-x