High-speed mechano-active multielectrode array for investigating rapid stretch effects on cardiac tissue

Systematic investigations of the effects of mechano-electric coupling (MEC) on cellular cardiac electrophysiology lack experimental systems suitable to subject tissues to in-vivo like strain patterns while simultaneously reporting changes in electrical activation. Here, we describe a self-contained...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 834 - 10
Main Authors Imboden, Matthias, de Coulon, Etienne, Poulin, Alexandre, Dellenbach, Christian, Rosset, Samuel, Shea, Herbert, Rohr, Stephan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.02.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Systematic investigations of the effects of mechano-electric coupling (MEC) on cellular cardiac electrophysiology lack experimental systems suitable to subject tissues to in-vivo like strain patterns while simultaneously reporting changes in electrical activation. Here, we describe a self-contained motor-less device (mechano-active multielectrode-array, MaMEA) that permits the assessment of impulse conduction along bioengineered strands of cardiac tissue in response to dynamic strain cycles. The device is based on polydimethylsiloxane (PDMS) cell culture substrates patterned with dielectric actuators (DEAs) and compliant gold ion-implanted extracellular electrodes. The DEAs induce uniaxial stretch and compression in defined regions of the PDMS substrate at selectable amplitudes and with rates up to 18 s −1 . Conduction along cardiomyocyte strands was found to depend linearly on static strain according to cable theory while, unexpectedly, being completely independent on strain rates. Parallel operation of multiple MaMEAs provides for systematic high-throughput investigations of MEC during spatially patterned mechanical perturbations mimicking in-vivo conditions. While strain is known to affect cardiac electrophysiology, experimental systems to interrogate the effect of rapid strain cycles on cardiac tissue are lacking. Here the authors introduce a multielectrode array that can induce rapid dynamic strain cycles on cardiomyocyte strands and see effects of strain amplitude but not strain rate on impulse conduction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-08757-2