Sub-5 nm single crystalline organic p–n heterojunctions

The cornerstones of emerging high-performance organic photovoltaic devices are bulk heterojunctions, which usually contain both structure disorders and bicontinuous interpenetrating grain boundaries with interfacial defects. This feature complicates fundamental understanding of their working mechani...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 2774
Main Authors Xiao, Mingchao, Liu, Jie, Liu, Chuan, Han, Guangchao, Shi, Yanjun, Li, Chunlei, Zhang, Xi, Hu, Yuanyuan, Liu, Zitong, Gao, Xike, Cai, Zhengxu, Liu, Ji, Yi, Yuanping, Wang, Shuai, Wang, Dong, Hu, Wenping, Liu, Yunqi, Sirringhaus, Henning, Jiang, Lang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.05.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The cornerstones of emerging high-performance organic photovoltaic devices are bulk heterojunctions, which usually contain both structure disorders and bicontinuous interpenetrating grain boundaries with interfacial defects. This feature complicates fundamental understanding of their working mechanism. Highly-ordered crystalline organic p–n heterojunctions with well-defined interface and tailored layer thickness, are highly desirable to understand the nature of organic heterojunctions. However, direct growth of such a crystalline organic p–n heterojunction remains a huge challenge. In this work, we report a design rationale to fabricate monolayer molecular crystals based p–n heterojunctions. In an organic field-effect transistor configuration, we achieved a well-balanced ambipolar charge transport, comparable to single component monolayer molecular crystals devices, demonstrating the high-quality interface in the heterojunctions. In an organic solar cell device based on the p–n junction, we show the device exhibits gate-tunable open-circuit voltage up to 1.04 V, a record-high value in organic single crystalline photovoltaics. Realizing organic p–n junctions based on ordered crystalline materials with dimensions comparable to the exciton diffusion length of most organic semiconductors remains a challenge. Here, the authors report a strategy to form molecular monolayer crystal-based p–n junctions with thickness below 5 nm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23066-3