Advanced sulfide solid electrolyte by core-shell structural design

Solid electrolyte is critical to next-generation solid-state lithium-ion batteries with high energy density and improved safety. Sulfide solid electrolytes show some unique properties, such as the high ionic conductivity and low mechanical stiffness. Here we show that the electrochemical stability w...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 4037 - 11
Main Authors Wu, Fan, Fitzhugh, William, Ye, Luhan, Ning, Jiaxin, Li, Xin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.10.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Solid electrolyte is critical to next-generation solid-state lithium-ion batteries with high energy density and improved safety. Sulfide solid electrolytes show some unique properties, such as the high ionic conductivity and low mechanical stiffness. Here we show that the electrochemical stability window of sulfide electrolytes can be improved by controlling synthesis parameters and the consequent core-shell microstructural compositions. This results in a stability window of 0.7–3.1 V and quasi-stability window of up to 5 V for Li-Si-P-S sulfide electrolytes with high Si composition in the shell, a window much larger than the previously predicted one of 1.7–2.1 V. Theoretical and computational work explains this improved voltage window in terms of volume constriction, which resists the decomposition accompanying expansion of the solid electrolyte. It is shown that in the limiting case of a core-shell morphology that imposes a constant volume constraint on the electrolyte, the stability window can be further opened up. Advanced strategies to design the next-generation sulfide solid electrolytes are also discussed based on our understanding. Sulfide electrolyte materials offer the opportunity for the development of solid-state batteries. Here the authors further improve the voltage stability of core-shell structured sulfides by modifying the microstructures, and pair the optimized electrolytes with lithium metal anode into battery devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-06123-2