An automated Bayesian pipeline for rapid analysis of single-molecule binding data

Single-molecule binding assays enable the study of how molecular machines assemble and function. Current algorithms can identify and locate individual molecules, but require tedious manual validation of each spot. Moreover, no solution for high-throughput analysis of single-molecule binding data exi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; p. 272
Main Authors Smith, Carlas S., Jouravleva, Karina, Huisman, Maximiliaan, Jolly, Samson M., Zamore, Phillip D., Grunwald, David
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.01.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-molecule binding assays enable the study of how molecular machines assemble and function. Current algorithms can identify and locate individual molecules, but require tedious manual validation of each spot. Moreover, no solution for high-throughput analysis of single-molecule binding data exists. Here, we describe an automated pipeline to analyze single-molecule data over a wide range of experimental conditions. In addition, our method enables state estimation on multivariate Gaussian signals. We validate our approach using simulated data, and benchmark the pipeline by measuring the binding properties of the well-studied, DNA-guided DNA endonuclease, TtAgo, an Argonaute protein from the Eubacterium Thermus thermophilus . We also use the pipeline to extend our understanding of TtAgo by measuring the protein’s binding kinetics at physiological temperatures and for target DNAs containing multiple, adjacent binding sites. Analysis of single-molecule binding assays still requires substantial manual user intervention. Here, the authors present a pipeline for rapid, automated analysis of co-localization single-molecule spectroscopy images, with a modular user interface that can be adjusted to a range of experimental conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-08045-5