AMINOPEPTIDASE ACTIVITY OF AN ANTITUMOR ANTIBIOTIC, C-1027

An antitumor antibiotic C-1027, a complex protein consisting of an apoprotein and a non-covalently bound chromophore, showed some aminopeptidase activity, 1/15 (on the basis of activity per mg protein) that of porcine kidney enzyme [E.C. 3.4.11.2] by use of L-phenylalanyl 4-methyl-coumaryl-7-amide a...

Full description

Saved in:
Bibliographic Details
Published inJournal of antibiotics Vol. 45; no. 1; pp. 113 - 117
Main Authors SAKATA, NOBUO, TSUCHIYA, KAYOKO S., MORIYA, YUKARI, HAYASHI, HIDEMI, HORI, MAKOTO, OTANI, TOSHIO, NAGAI, MACHIKO, AOYAGI, TAKAAKI
Format Journal Article
LanguageEnglish
Published Tokyo JAPAN ANTIBIOTICS RESEARCH ASSOCIATION 01.01.1992
Japan Antibiotics Research Association
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An antitumor antibiotic C-1027, a complex protein consisting of an apoprotein and a non-covalently bound chromophore, showed some aminopeptidase activity, 1/15 (on the basis of activity per mg protein) that of porcine kidney enzyme [E.C. 3.4.11.2] by use of L-phenylalanyl 4-methyl-coumaryl-7-amide as the substrate. Neither the apoprotein alone nor the chromophore alone were active. Amastatin and bestatin but not leupeptin inhibited the activity. The enzyme activity of the holo-antibiotic, as opposed to that of the porcine kidney enzyme, was readily lost by UV irradiation, indicating that the intact structure of the chromophore was needed to maintain the native conformation of the holo-antibiotic. The cytotoxicity of the holo-antibiotic, but not that of the chromophore, to Ehrlich carcinoma cells in vitro was reduced to 1/5 by 1 μg/ml of amastatin which alone had no effect on cell growth. The porcine aminopeptidase was not cytotoxic at all even at higher concentrations (higher enzyme activities/ml). Amastatin possibly occupied the catalytic domain of the holo-antibiotic, interfering with the binding of the holo-antibiotic with some cell-surface protein(s). Amastatin did not inhibit the holo-antibiotic to cleave isolated DNA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8820
1881-1469
DOI:10.7164/antibiotics.45.113