Single-component color-tunable circularly polarized organic afterglow through chiral clusterization

Circularly polarized organic afterglow (CPOA) with both long-lived room-temperature phosphorescence (RTP) and circularly polarized luminescence (CPL) is currently attracting great interest, but the development of multicolor-tunable CPOA in a single-component material remains a formidable challenge....

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; p. 429
Main Authors Li, Hui, Gu, Jie, Wang, Zijie, Wang, Juan, He, Fei, Li, Ping, Tao, Ye, Li, Huanhuan, Xie, Gaozhan, Huang, Wei, Zheng, Chao, Chen, Runfeng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.01.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Circularly polarized organic afterglow (CPOA) with both long-lived room-temperature phosphorescence (RTP) and circularly polarized luminescence (CPL) is currently attracting great interest, but the development of multicolor-tunable CPOA in a single-component material remains a formidable challenge. Here, we report an efficient strategy to achieve multicolor CPOA molecules through chiral clusterization by implanting chirality center into non-conjugated organic cluster. Owing to excitation-dependent emission of clusters, highly efficient and significantly tuned CPOA emissions from blue to yellowish-green with dissymmetry factor over 2.3 × 10 −3 and lifetime up to 587 ms are observed under different excitation wavelengths. With the distinguished color-tunable CPOA, the multicolor CPL displays and visual RTP detection of ultraviolent light wavelength are successfully constructed. These results not only provide a new paradigm for realization of multicolor-tunable CPOA materials in single-component molecular systems, but also offer new opportunities for expanding the applicability of CPL and RTP materials for diversified applications. Circularly polarized organic afterglow (CPOA) with both long-lived room-temperature phosphorescence and circularly polarized luminescence is attracting great interest, but the development of multicolor-tunable CPOA in a single-component material remains challenging. Here, the authors report a strategy to achieve multicolor CPOA through chiral clusterization by inserting a chirality center into a non-conjugated organic cluster.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-28070-9