Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia

Under hypoxia, most of glucose is converted to secretory lactate, which leads to the overuse of glutamine-carbon. However, under such a condition how glutamine nitrogen is disposed to avoid over-accumulating ammonia remains to be determined. Here we identify a metabolic flux of glutamine to secretor...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 201 - 14
Main Authors Wang, Yuanyuan, Bai, Changsen, Ruan, Yuxia, Liu, Miao, Chu, Qiaoyun, Qiu, Li, Yang, Chuanzhen, Li, Binghui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.01.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Under hypoxia, most of glucose is converted to secretory lactate, which leads to the overuse of glutamine-carbon. However, under such a condition how glutamine nitrogen is disposed to avoid over-accumulating ammonia remains to be determined. Here we identify a metabolic flux of glutamine to secretory dihydroorotate, which is indispensable to glutamine-carbon metabolism under hypoxia. We found that glutamine nitrogen is necessary to nucleotide biosynthesis, but enriched in dihyroorotate and orotate rather than processing to its downstream uridine monophosphate under hypoxia. Dihyroorotate, not orotate, is then secreted out of cells. Furthermore, we found that the specific metabolic pathway occurs in vivo and is required for tumor growth. The identified metabolic pathway renders glutamine mainly to acetyl coenzyme A for lipogenesis, with the rest carbon and nitrogen being safely removed. Therefore, our results reveal how glutamine carbon and nitrogen are coordinatively metabolized under hypoxia, and provide a comprehensive understanding on glutamine metabolism. Glutamine metabolism is increased in proliferating cells under hypoxia potentially generating exceeding nitrogen. Here the authors show that under hypoxia a specific metabolic pathway is activated to push glutamine carbons and excess nitrogen via the reductive pathway to dihyroorotate which is then secreted by the cells and that such pathway is necessary for tumor growth.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-08033-9