Thermal management and non-reciprocal control of phonon flow via optomechanics

Engineering phonon transport in physical systems is a subject of interest in the study of materials, and has a crucial role in controlling energy and heat transfer. Of particular interest are non-reciprocal phononic systems, which in direct analogy to electric diodes, provide a directional flow of e...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 1207 - 8
Main Authors Seif, Alireza, DeGottardi, Wade, Esfarjani, Keivan, Hafezi, Mohammad
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.03.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Engineering phonon transport in physical systems is a subject of interest in the study of materials, and has a crucial role in controlling energy and heat transfer. Of particular interest are non-reciprocal phononic systems, which in direct analogy to electric diodes, provide a directional flow of energy. Here, we propose an engineered nanostructured material, in which tunable non-reciprocal phonon transport is achieved through optomechanical coupling. Our scheme relies on breaking time-reversal symmetry by a spatially varying laser drive, which manipulates low-energy acoustic phonons. Furthermore, we take advantage of developments in the manipulation of high-energy phonons through controlled scattering mechanisms, such as using alloys and introducing disorder. These combined approaches allow us to design an acoustic isolator and a thermal diode. Our proposed device will have potential impact in phonon-based information processing, and heat management in low temperatures. Phonon transport control is important for thermal and non-reciprocal devices. Here, Seif et al. combine heat transport in nanostructures and optomechanics into a platform for manipulating phonons with which they design an acoustic isolator and a thermal diode.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03624-y