Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks

Molecular tessellations are often discovered serendipitously, and the mechanisms by which specific molecules can be tiled seamlessly to form periodic tessellation remain unclear. Fabrication of molecular tessellation with higher symmetry compared with traditional Bravais lattices promises potential...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 4871 - 8
Main Authors Cheng, Fang, Wu, Xue-Jun, Hu, Zhixin, Lu, Xuefeng, Ding, Zijing, Shao, Yan, Xu, Hai, Ji, Wei, Wu, Jishan, Loh, Kian Ping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.11.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular tessellations are often discovered serendipitously, and the mechanisms by which specific molecules can be tiled seamlessly to form periodic tessellation remain unclear. Fabrication of molecular tessellation with higher symmetry compared with traditional Bravais lattices promises potential applications as photonic crystals. Here, we demonstrate that highly complex tessellation can be constructed on Au(111) from a single molecular building block, hexakis(4-iodophenyl)benzene (HPBI). HPBI gives rise to two self-assembly phases on Au(111) that possess the same geometric symmetry but different packing densities, on account of the presence of halogen-bonded and halogen–metal coordinated networks. Sub-domains of these phases with self-similarity serve as tiles in the periodic tessellations to express polygons consisting of parallelograms and two types of triangles. Our work highlights the important principle of constructing multiple phases with self-similarity from a single building block, which may constitute a new route to construct complex tessellations. Molecular tessellations of complex tilings are difficult to design and construct. Here, the authors show that molecular tessellations can be formed from a single building block that gives rise to two distinct supramolecular phases, whose self-similar subdomains serve as tiles in the periodic tessellations.
AbstractList Molecular tessellations are often discovered serendipitously, and the mechanisms by which specific molecules can be tiled seamlessly to form periodic tessellation remain unclear. Fabrication of molecular tessellation with higher symmetry compared with traditional Bravais lattices promises potential applications as photonic crystals. Here, we demonstrate that highly complex tessellation can be constructed on Au(111) from a single molecular building block, hexakis(4-iodophenyl)benzene (HPBI). HPBI gives rise to two self-assembly phases on Au(111) that possess the same geometric symmetry but different packing densities, on account of the presence of halogen-bonded and halogen–metal coordinated networks. Sub-domains of these phases with self-similarity serve as tiles in the periodic tessellations to express polygons consisting of parallelograms and two types of triangles. Our work highlights the important principle of constructing multiple phases with self-similarity from a single building block, which may constitute a new route to construct complex tessellations.
Molecular tessellations are often discovered serendipitously, and the mechanisms by which specific molecules can be tiled seamlessly to form periodic tessellation remain unclear. Fabrication of molecular tessellation with higher symmetry compared with traditional Bravais lattices promises potential applications as photonic crystals. Here, we demonstrate that highly complex tessellation can be constructed on Au(111) from a single molecular building block, hexakis(4-iodophenyl)benzene (HPBI). HPBI gives rise to two self-assembly phases on Au(111) that possess the same geometric symmetry but different packing densities, on account of the presence of halogen-bonded and halogen–metal coordinated networks. Sub-domains of these phases with self-similarity serve as tiles in the periodic tessellations to express polygons consisting of parallelograms and two types of triangles. Our work highlights the important principle of constructing multiple phases with self-similarity from a single building block, which may constitute a new route to construct complex tessellations. Molecular tessellations of complex tilings are difficult to design and construct. Here, the authors show that molecular tessellations can be formed from a single building block that gives rise to two distinct supramolecular phases, whose self-similar subdomains serve as tiles in the periodic tessellations.
Molecular tessellations of complex tilings are difficult to design and construct. Here, the authors show that molecular tessellations can be formed from a single building block that gives rise to two distinct supramolecular phases, whose self-similar subdomains serve as tiles in the periodic tessellations.
Molecular tessellations are often discovered serendipitously, and the mechanisms by which specific molecules can be tiled seamlessly to form periodic tessellation remain unclear. Fabrication of molecular tessellation with higher symmetry compared with traditional Bravais lattices promises potential applications as photonic crystals. Here, we demonstrate that highly complex tessellation can be constructed on Au(111) from a single molecular building block, hexakis(4-iodophenyl)benzene (HPBI). HPBI gives rise to two self-assembly phases on Au(111) that possess the same geometric symmetry but different packing densities, on account of the presence of halogen-bonded and halogen-metal coordinated networks. Sub-domains of these phases with self-similarity serve as tiles in the periodic tessellations to express polygons consisting of parallelograms and two types of triangles. Our work highlights the important principle of constructing multiple phases with self-similarity from a single building block, which may constitute a new route to construct complex tessellations.Molecular tessellations are often discovered serendipitously, and the mechanisms by which specific molecules can be tiled seamlessly to form periodic tessellation remain unclear. Fabrication of molecular tessellation with higher symmetry compared with traditional Bravais lattices promises potential applications as photonic crystals. Here, we demonstrate that highly complex tessellation can be constructed on Au(111) from a single molecular building block, hexakis(4-iodophenyl)benzene (HPBI). HPBI gives rise to two self-assembly phases on Au(111) that possess the same geometric symmetry but different packing densities, on account of the presence of halogen-bonded and halogen-metal coordinated networks. Sub-domains of these phases with self-similarity serve as tiles in the periodic tessellations to express polygons consisting of parallelograms and two types of triangles. Our work highlights the important principle of constructing multiple phases with self-similarity from a single building block, which may constitute a new route to construct complex tessellations.
ArticleNumber 4871
Author Shao, Yan
Ding, Zijing
Xu, Hai
Wu, Jishan
Lu, Xuefeng
Hu, Zhixin
Cheng, Fang
Loh, Kian Ping
Ji, Wei
Wu, Xue-Jun
Author_xml – sequence: 1
  givenname: Fang
  surname: Cheng
  fullname: Cheng, Fang
  organization: Department of Chemistry, National University of Singapore
– sequence: 2
  givenname: Xue-Jun
  surname: Wu
  fullname: Wu, Xue-Jun
  organization: State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University
– sequence: 3
  givenname: Zhixin
  orcidid: 0000-0002-3253-6964
  surname: Hu
  fullname: Hu, Zhixin
  organization: Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University
– sequence: 4
  givenname: Xuefeng
  surname: Lu
  fullname: Lu, Xuefeng
  organization: Department of Chemistry, National University of Singapore
– sequence: 5
  givenname: Zijing
  surname: Ding
  fullname: Ding, Zijing
  organization: Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore
– sequence: 6
  givenname: Yan
  surname: Shao
  fullname: Shao, Yan
  organization: Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 7
  givenname: Hai
  surname: Xu
  fullname: Xu, Hai
  organization: Department of Chemistry, National University of Singapore, Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore
– sequence: 8
  givenname: Wei
  orcidid: 0000-0001-5249-6624
  surname: Ji
  fullname: Ji, Wei
  organization: Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China
– sequence: 9
  givenname: Jishan
  orcidid: 0000-0002-8231-0437
  surname: Wu
  fullname: Wu, Jishan
  organization: Department of Chemistry, National University of Singapore
– sequence: 10
  givenname: Kian Ping
  orcidid: 0000-0002-1491-743X
  surname: Loh
  fullname: Loh, Kian Ping
  email: chmlohkp@nus.edu.sg
  organization: Department of Chemistry, National University of Singapore, Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30451862$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uFSEUx4mpsbX2BVyYSdy4GeXrArMxMY0fTZq4qWvCMGduuTJQgbHpznfoG_ZJ5H5Ub7soGw6H__nxD-e8RAchBkDoNcHvCWbqQ-aEC9liolosGWWteIaOKOakJZKyg734EJ3kvMJ1sY4ozl-gQ4b5gihBj1C8uI7t4CYI2cVgfFMgZ_DelHps-ptmih7s7E1qivOQGxtDLmm2BYZmTHFqLo2PSwh3f253UWPCsJedoFRsgHId08_8Cj0fjc9wstuP0Y8vny9Ov7Xn37-enX46b63AorRy6HCnJBCgVgAhFI-UG9wBk4MQVkozYI7FCLg3nEmGFelGZqSiI1FUGnaMzrbcIZqVvkpuMulGR-P0JhHTUptUnPWgqYAeBCEDUz3vFryTBPNOCVvfY73klfVxy7qa-wkGC6Ek4x9AH94Ed6mX8bcWlFPFRAW82wFS_DVDLnpy2a5_OUCcs6aELQRT3aKr0rePpKs4p9qYnYqy2vGqerPv6J-V-75WgdoKbIo5Jxi1dWXT02rQeU2wXk-R3k6Rrky9mSK9Nksfld7Tnyxi26JcxWEJ6b_tJ6r-AsTB2_I
CitedBy_id crossref_primary_10_1016_j_cplett_2022_139799
crossref_primary_10_1039_D4CP00696H
crossref_primary_10_1039_C8NR09810G
crossref_primary_10_1021_acs_langmuir_3c00918
crossref_primary_10_1021_acs_jpclett_3c02620
crossref_primary_10_1002_smll_202102246
crossref_primary_10_1021_acs_jpclett_1c02345
crossref_primary_10_1063_1674_0068_cjcp1905082
crossref_primary_10_1021_acsnano_3c05945
crossref_primary_10_1002_smll_202307171
crossref_primary_10_1016_j_jmps_2022_104974
crossref_primary_10_1063_5_0196443
crossref_primary_10_1021_acs_langmuir_3c00880
crossref_primary_10_1021_acs_nanolett_9b02829
crossref_primary_10_1038_s41467_022_33446_y
crossref_primary_10_1039_D0CC00199F
crossref_primary_10_1038_s41467_020_15727_6
crossref_primary_10_1021_acs_jpcc_3c00373
crossref_primary_10_1002_ange_201912247
crossref_primary_10_1021_acs_jpclett_2c00147
crossref_primary_10_1021_acsnano_4c10522
crossref_primary_10_1007_s12274_021_3409_9
crossref_primary_10_1103_PhysRevLett_134_076402
crossref_primary_10_1073_pnas_2300049120
crossref_primary_10_1016_j_cej_2019_122998
crossref_primary_10_1021_acsnano_2c03909
crossref_primary_10_1039_D0NR08908G
crossref_primary_10_1039_D1NR05589E
crossref_primary_10_1021_acsami_0c05856
crossref_primary_10_1021_acs_jpcc_1c08045
crossref_primary_10_1039_D1QI00585E
crossref_primary_10_1016_j_cclet_2024_110100
crossref_primary_10_1039_D4CC02402H
crossref_primary_10_3390_ijms241411291
crossref_primary_10_1007_s12274_021_3824_y
crossref_primary_10_1016_j_cclet_2024_110445
crossref_primary_10_1021_acs_jpcc_9b01881
crossref_primary_10_1002_anie_201912247
crossref_primary_10_1021_acs_jpcc_2c03361
crossref_primary_10_1021_acsnanoscienceau_2c00005
crossref_primary_10_1016_j_jsv_2022_116971
crossref_primary_10_1038_s42004_020_0314_1
Cites_doi 10.1021/ja8101083
10.1002/anie.200460174
10.1038/nchem.2507
10.1103/PhysRevLett.113.098304
10.1002/anie.200805689
10.1002/anie.201705018
10.1038/nchem.517
10.1021/jacs.5b02206
10.1002/anie.201102627
10.1107/S0365110X58000487
10.1002/anie.200704479
10.1038/nchem.503
10.1021/ja065904k
10.1007/BF02020950
10.1146/annurev.physchem.56.092503.141259
10.1038/nchem.1199
10.1073/pnas.1222713110
10.1021/ja900499b
10.1126/science.1125894
10.1016/j.cclet.2016.08.004
10.1063/1.4973472
10.1039/C7CC06110B
10.1021/acsnano.6b00322
10.1021/acsnano.7b06787
10.1126/science.1163338
10.1021/ja211749b
10.1021/ja8028119
10.1002/chem.200900900
10.1103/PhysRevLett.92.036803
10.1063/1.3382344
10.1039/c1cc13114a
10.1126/science.253.5018.424
10.1002/adma.201505371
10.1103/PhysRevB.31.805
10.1021/jp306780n
10.1103/PhysRevLett.77.3865
10.1038/nchem.2924
10.1109/3.958365
10.1038/nature12993
10.1002/anie.201208397
10.1103/PhysRevLett.97.146103
10.1103/PhysRevB.59.1758
10.1021/ja0655441
10.1126/science.aai8625
10.1073/pnas.1019763108
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.75.195122
10.1021/jo048521i
10.1016/j.susc.2008.06.009
10.1021/nn504431e
10.1364/OE.16.004048
10.1143/ptp/6.3.306
10.1103/PhysRevB.50.17953
10.1103/PhysRevE.73.046116
10.1038/nchem.2211
10.1021/ja904907z
10.1364/OL.25.001001
10.1039/c2nr31648j
10.1039/b206566p
10.1002/anie.200603325
10.1039/C6NR06527A
10.1103/PhysRevB.96.144304
10.1103/PhysRevB.70.205426
10.1021/cr9900432
10.1021/ja204956b
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-018-07323-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Chemistry
Physics
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_26ebe611d38b495497104986ca093b74
PMC6242836
30451862
10_1038_s41467_018_07323_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-7d90987e1e2c6e1120f24a09e37d66c77ad0406fe0ba43730819f3a782f1827a3
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:28 EDT 2025
Thu Aug 21 18:33:20 EDT 2025
Fri Jul 11 02:00:36 EDT 2025
Wed Aug 13 09:13:38 EDT 2025
Mon Jul 21 06:18:14 EDT 2025
Tue Jul 01 02:21:19 EDT 2025
Thu Apr 24 22:50:46 EDT 2025
Fri Feb 21 02:39:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-7d90987e1e2c6e1120f24a09e37d66c77ad0406fe0ba43730819f3a782f1827a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5249-6624
0000-0002-3253-6964
0000-0002-8231-0437
0000-0002-1491-743X
OpenAccessLink https://www.proquest.com/docview/2135623018?pq-origsite=%requestingapplication%
PMID 30451862
PQID 2135623018
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_26ebe611d38b495497104986ca093b74
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6242836
proquest_miscellaneous_2135638959
proquest_journals_2135623018
pubmed_primary_30451862
crossref_citationtrail_10_1038_s41467_018_07323_6
crossref_primary_10_1038_s41467_018_07323_6
springer_journals_10_1038_s41467_018_07323_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-19
PublicationDateYYYYMMDD 2018-11-19
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-19
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861996PhRvB..5411169K10.1103/PhysRevB.54.111691:CAS:528:DyaK28Xms1Whu7Y%3D
FrankFCKasperJSComplex alloy structures regarded as sphere packings. 1. Definitions and basic principlesActa Cryst.19581118419010.1107/S0365110X580004871:CAS:528:DyaG1cXkvVCjsA%3D%3D
BluntMORandom tiling and topological defects in a two-dimensional molecular networkScience2008322107710812008Sci...322.1077B10.1126/science.11633381:CAS:528:DC%2BD1cXhtlGhu7fI
WuJArylamine-substituted hexa-peri-hexabenzocoronenes: facile synthesis and their potential applications as “Coaxial” hole-transport materialsAngew. Chem. Int. Ed.2004435331533510.1002/anie.2004601741:CAS:528:DC%2BD2cXptVanurw%3D
PivettaMBlumMCPattheyFSchneiderWDTwo-dimensional tiling by rubrene molecules self-assembled in supramolecular pentagons, hexagons, and heptagons on a Au(111) surfaceAngew. Chem. Int. Ed.2008471076107910.1002/anie.2007044791:CAS:528:DC%2BD1cXhvFSitLo%3D
TaharaKTwo-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitationJ. Am. Chem. Soc.2006128166131662510.1021/ja06554411:CAS:528:DC%2BD28XhtlWmurrN
BartelsLTailoring molecular layers at metal surfacesNat. Chem.20102879510.1038/nchem.5171:CAS:528:DC%2BC3cXos1Crsw%3D%3D
MoultonBZaworotkoMJFrom molecules to crystal engineering: supramolecular isomerism and polymorphism in network solidsChem. Rev.20011011629165810.1021/cr99004321:CAS:528:DC%2BD3MXjtlyqtrg%3D
StelsonACBrittonWAWatsonCMLPhotonic crystal properties of self-assembled Archimedean tilingsJ. Appl. Phys.20171210231012017JAP...121b3101S10.1063/1.49734721:CAS:528:DC%2BC2sXotlCltg%3D%3D
DavidSChelnokovALourtiozJMWide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilingsOpt. Lett.200025100110032000OptL...25.1001D10.1364/OL.25.0010011:STN:280:DC%2BD2sjjtVSrsg%3D%3D
IacovellaCRKeysASGlotzerSCSelf-assembly of soft-matter quasicrystals and their approximantsProc. Natl. Acad. Sci. USA201110820935209402011PNAS..10820935I10.1073/pnas.1019763108
Gonzalez-HerreroHGraphene tunable transparency to tunneling electrons: a direct tool to measure the local couplingACS Nano2016105131514410.1021/acsnano.6b003221:CAS:528:DC%2BC28XmsFOgsbc%3D
FanQSurface adatom mediated structural transformation in bromoarene monolayers: precursor phases in surface Ullmann reactionACS Nano2018122267227410.1021/acsnano.7b067871:CAS:528:DC%2BC1cXjtVWht7c%3D
UrgelJIQuasicrystallinity expressed in two-dimensional coordination networksNat. Chem.2016865766210.1038/nchem.25071:CAS:528:DC%2BC28XotV2nt7g%3D
BarthJVMolecular architectonic on metal surfacesAnnu. Rev. Phys. Chem.2007583754072007ARPC...58..375B10.1146/annurev.physchem.56.092503.1412591:CAS:528:DC%2BD2sXlslSit74%3D
FaraggiMNBonding and charge transfer in metal–organic coordination networks on Au(111) with strong acceptor moleculesJ. Phys. Chem. C2012116245582456510.1021/jp306780n1:CAS:528:DC%2BC38XhsF2jsb7L
MarschallMRandom two-dimensional string networks based on divergent coordination assemblyNat. Chem.2010213113710.1038/nchem.5031:CAS:528:DC%2BC3cXos1Crtw%3D%3D
NewkomeGRNanoassembly of a fractal polymer: a molecular “Sierpinski hexagonal gasket”Science2006312178217852006Sci...312.1782N223757110.1126/science.11258941:CAS:528:DC%2BD28XmtVSnt78%3D
ReppJMeyerGRiederKHSnell’s law for surface electrons: refraction of an electron gas imaged in real spacePhys. Rev. Lett.2004920368032004PhRvL..92c6803R10.1103/PhysRevLett.92.0368031:CAS:528:DC%2BD2cXmvVegug%3D%3D
BarkanKEngelMLifshitzRControlled self-assembly of periodic and aperiodic cluster crystalsPhys. Rev. Lett.20141130983042014PhRvL.113i8304B10.1103/PhysRevLett.113.0983041:CAS:528:DC%2BC2cXhslShtL7J
ZhengQNFormation of halogen bond-based 2D supramolecular assemblies by electric manipulationJ. Am. Chem. Soc.20151376128613110.1021/jacs.5b022061:CAS:528:DC%2BC2MXnvV2lu78%3D
LehnJMPerspectives in chemistry--steps towards complex matterAngew. Chem. Int. Ed.2013522836285010.1002/anie.2012083971:CAS:528:DC%2BC3sXislymsbc%3D
DavidSChelnikovALourtiozJMIsotropic photonic structures: Archimedean-like tilings and quasi-crystalsIEEE J. Quantum Electron.200137142714342001IJQE...37.1427D10.1109/3.9583651:CAS:528:DC%2BD3MXnsl2kt7o%3D
BasnarkovLUrumovVDiffusion on Archimedean latticesPhys. Rev. E2006730461162006PhRvE..73d6116B223140210.1103/PhysRevE.73.0461161:CAS:528:DC%2BD28XksFCkurw%3D
GutzlerRHalogen bonds as stabilizing interactions in a chiral self-assembled molecular monolayerChem. Commun.2011479453945510.1039/c1cc13114a1:CAS:528:DC%2BC3MXpvFyktr4%3D
StannardABroken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilingsNat. Chem.2012411211710.1038/nchem.11991:CAS:528:DC%2BC3MXhsV2gtrvK
WasioNASelf-assembly of hydrogen-bonded two-dimensional quasicrystalsNature201450786892014Natur.507...86W10.1038/nature129931:CAS:528:DC%2BC2cXjs1Giu7g%3D
HanZImaging the halogen bond in self-assembled halogenbenzenes on silverScience20173582062102017Sci...358..206H10.1126/science.aai86251:CAS:528:DC%2BC2sXhs1aksLnP
GuillermetOSelf-assembly of fivefold-symmetric molecules on a threefold-symmetric surfaceAngew. Chem. Int. Ed.2009481970197310.1002/anie.2008056891:CAS:528:DC%2BD1MXjsFCqsr4%3D
RosselFModified herringbone reconstruction on Au(111) induced by self-assembled Azure A islandsSurf. Sci.2008602L115L11710.1016/j.susc.2008.06.0091:CAS:528:DC%2BD1cXpt1Khtr0%3D
DriverSMZhangTKingDAMassively cooperative adsorbate-induced surface restructuring and nanocluster formationAngew. Chem. Int. Ed.20074670070310.1002/anie.2006033251:CAS:528:DC%2BD2sXhtlekt74%3D
ShiZLinNPorphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surfaceJ. Am. Chem. Soc.20091315376537710.1021/ja900499b1:CAS:528:DC%2BD1MXjvFKlu7g%3D
ZhangYQComplex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursorNat. Chem.20181029630410.1038/nchem.29241:CAS:528:DC%2BC1cXhtlOlu70%3D
WangCGChengZHQiuXHJiWUnusually high electron density in an intermolecular non-bonding region: Role of metal substrateChin. Chem. Lett.20172875976410.1016/j.cclet.2016.08.0041:CAS:528:DC%2BC28XhsV2js7vK
TersoffJHamannDRTheory of the scanning tunneling microscopePhys. Rev. B1985318058131985PhRvB..31..805T10.1103/PhysRevB.31.8051:CAS:528:DyaL2MXovVSmtA%3D%3D
PfeifferCRPearceNChampnessNRComplexity of two-dimensional self-assembled arrays at surfacesChem. Commun.201753115281153910.1039/C7CC06110B1:CAS:528:DC%2BC2sXhsFylsb3K
Kepler, J. Harmonices Mundi (Johannes Planck, Linz, 1619).
Grünbaum, B. & Shephard, G. C. Tilings and Patterns (W. H. Freeman, New York, 1986).
RabeJPBuchholzSCommensurability and mobility in two-dimensional molecular patterns on graphiteScience19912534244271991Sci...253..424R10.1126/science.253.5018.4241:CAS:528:DyaK3MXlsVeitL8%3D
BonifaziDMohnaniSLlanes-PallasASupramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfacesChem. Eur. J.2009157004702510.1002/chem.2009009001:CAS:528:DC%2BD1MXoslyjtL4%3D
YangZOrbital redistribution in molecular nanostructures mediated by metal–organic bondsACS Nano20148107151072210.1021/nn504431e1:CAS:528:DC%2BC2cXhsFOru73M
KobayashiKSyntheses of hexakis(4-functionalized-phenyl)benzenes and hexakis[4-(4‘-functionalized-phenylethynyl)phenyl]benzenes directed to host molecules for guest-inclusion networksJ. Org. Chem.20057074975210.1021/jo048521i1:CAS:528:DC%2BD2cXhtFCiu7fF
KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B199959175817751999PhRvB..59.1758K10.1103/PhysRevB.59.17581:CAS:528:DyaK1MXkt12nug%3D%3D
CiesielskiASamorìPSupramolecular approaches to graphene: from self-assembly to molecule-assisted liquid-phase exfoliationAdv. Mater.2016286030605110.1002/adma.2015053711:CAS:528:DC%2BC28XjtlOjtbg%3D
StöhrMSelf-assembly and two-dimensional spontaneous resolution of cyano-functionalized [7]helicenes on Cu(111)Angew. Chem. Int. Ed.2011509982998610.1002/anie.2011026271:CAS:528:DC%2BC3MXhtFKhs7vI
JovanovićƉGajićRHingerlKRefraction and band isotropy in 2D square-like Archimedean photonic crystal latticesOpt. Express200816404840582008OExpr..16.4048J10.1364/OE.16.004048
BauertTBuilding 2D crystals from 5-fold-symmetric moleculesJ. Am. Chem. Soc.20091313460346110.1021/ja81010831:CAS:528:DC%2BD1MXisVCisb4%3D
Escher, M. C. The World of M. C. Escher (Harry N. Abrams, New York, 1991).
ZhouXSteering surface reaction dynamics with a self-assembly strategy: Ullmann coupling on metal surfacesAngew. Chem. Int. Ed.201756128521285610.1002/anie.2017050181:CAS:528:DC%2BC2sXhsVeru7bI
TóthLFOn shortest nets with meshes of equal areaActa Math. Acad. Sci. Hungar.19601136337012621410.1007/BF02020950
ShangJAssembling molecular Sierpinski triangle fractalsNat. Chem.2015738939310.1038/nchem.22111:CAS:528:DC%2BC2MXls1Wqurk%3D
De FeyterSDe SchryverFCTwo-dimensional supramolecular self-assembly probed by scanning tunneling microscopyChem. Soc. Rev.20033213915010.1039/b206566p1:CAS:528:DC%2BD3sXjtFGmt7g%3D
WangWSingle-molecule resolution of an organometallic intermediate in a surface-supported Ullmann coupling reactionJ. Am. Chem. Soc.2011133132641326710.1021/ja204956b1:CAS:528:DC%2BC3MXptFKmsLY%3D
SchlickumUChiral Kagomé lattice from simple ditopic molecular bricksJ. Am. Chem. Soc.2008130117781178210.1021/ja80281191:CAS:528:DC%2BD1cXps1KnsL4%3D
BaberAEJensenSCIskiEVSykesECHExtraordinary atomic mobility of Au{111} at 80 Kelvin: effect of styrene adsorptionJ. Am. Chem. Soc.2006128153841538510.1021/ja065904k1:CAS:528:DC%2BD28XhtF2ntLbJ
PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.38651:CAS:528:DyaK28XmsVCgsbs%3D
Della PiaATwo-dimensional core-shell donor-acceptor assemblies at metal-organic interfaces promoted by surface-mediated charge transferNanoscale201681900
CG Wang (7323_CR60) 2017; 28
JI Urgel (7323_CR36) 2016; 8
U Schlickum (7323_CR23) 2008; 130
D Gerbert (7323_CR59) 2017; 96
NA Wasio (7323_CR18) 2014; 507
7323_CR2
S David (7323_CR10) 2001; 37
7323_CR1
L Bartels (7323_CR6) 2010; 2
YQ Zhang (7323_CR27) 2018; 10
A Della Pia (7323_CR58) 2016; 8
7323_CR8
7323_CR7
T Andreev (7323_CR55) 2004; 70
X Zhou (7323_CR61) 2017; 56
J Repp (7323_CR56) 2004; 92
J Shang (7323_CR29) 2015; 7
CR Pfeiffer (7323_CR34) 2017; 53
J Tersoff (7323_CR70) 1985; 31
JV Barth (7323_CR5) 2007; 58
Z Han (7323_CR47) 2017; 358
S De Feyter (7323_CR43) 2003; 32
D Bonifazi (7323_CR42) 2009; 15
JM Lehn (7323_CR64) 2013; 52
R Gutzler (7323_CR41) 2012; 4
SM Driver (7323_CR52) 2007; 46
FC Frank (7323_CR4) 1958; 11
QN Zheng (7323_CR19) 2015; 137
M Pivetta (7323_CR38) 2008; 47
R Gutzler (7323_CR40) 2011; 47
AC Stelson (7323_CR13) 2017; 121
S Grimme (7323_CR69) 2010; 132
A Stannard (7323_CR33) 2012; 4
O Guillermet (7323_CR39) 2009; 48
Z Yang (7323_CR51) 2014; 8
K Ueda (7323_CR12) 2007; 75
R Otero (7323_CR22) 2008; 319
GR Newkome (7323_CR28) 2006; 312
I Syôzi (7323_CR35) 1951; 6
H Gonzalez-Herrero (7323_CR57) 2016; 10
JP Perdew (7323_CR65) 1996; 77
J Wu (7323_CR44) 2004; 43
F Rossel (7323_CR53) 2008; 602
L Basnarkov (7323_CR14) 2006; 73
W Wang (7323_CR46) 2011; 133
Q Fan (7323_CR48) 2018; 12
LF Tóth (7323_CR3) 1960; 11
JP Rabe (7323_CR16) 1991; 253
A Ciesielski (7323_CR21) 2016; 28
J Mao (7323_CR25) 2009; 131
D Ecija (7323_CR37) 2013; 110
B Moulton (7323_CR15) 2001; 101
CS Kley (7323_CR20) 2012; 134
T Bauert (7323_CR32) 2009; 131
Ɖ Jovanović (7323_CR11) 2008; 16
MO Blunt (7323_CR30) 2008; 322
MN Faraggi (7323_CR50) 2012; 116
CR Iacovella (7323_CR62) 2011; 108
G Kresse (7323_CR68) 1996; 54
M Stöhr (7323_CR17) 2011; 50
AE Baber (7323_CR54) 2006; 128
S David (7323_CR9) 2000; 25
Z Shi (7323_CR26) 2009; 131
K Tahara (7323_CR24) 2006; 128
K Kobayashi (7323_CR45) 2005; 70
PE Blöchl (7323_CR66) 1994; 50
G Kresse (7323_CR67) 1999; 59
P Maksymovych (7323_CR49) 2006; 97
K Barkan (7323_CR63) 2014; 113
M Marschall (7323_CR31) 2010; 2
References_xml – reference: AndreevTBarkeIHövelHAdsorbed rare-gas layers on Au(111): shift of the Shockley surface state studied with ultraviolet photoelectron spectroscopy and scanning tunneling spectroscopyPhys. Rev. B2004702054262004PhRvB..70t5426A10.1103/PhysRevB.70.2054261:CAS:528:DC%2BD2cXhtVGgtrvP
– reference: BlöchlPEProjector augmented-wave methodPhys. Rev. B19945017953179791994PhRvB..5017953B10.1103/PhysRevB.50.17953
– reference: BaberAEJensenSCIskiEVSykesECHExtraordinary atomic mobility of Au{111} at 80 Kelvin: effect of styrene adsorptionJ. Am. Chem. Soc.2006128153841538510.1021/ja065904k1:CAS:528:DC%2BD28XhtF2ntLbJ
– reference: LehnJMPerspectives in chemistry--steps towards complex matterAngew. Chem. Int. Ed.2013522836285010.1002/anie.2012083971:CAS:528:DC%2BC3sXislymsbc%3D
– reference: DriverSMZhangTKingDAMassively cooperative adsorbate-induced surface restructuring and nanocluster formationAngew. Chem. Int. Ed.20074670070310.1002/anie.2006033251:CAS:528:DC%2BD2sXhtlekt74%3D
– reference: Gonzalez-HerreroHGraphene tunable transparency to tunneling electrons: a direct tool to measure the local couplingACS Nano2016105131514410.1021/acsnano.6b003221:CAS:528:DC%2BC28XmsFOgsbc%3D
– reference: Della PiaATwo-dimensional core-shell donor-acceptor assemblies at metal-organic interfaces promoted by surface-mediated charge transferNanoscale20168190041901310.1039/C6NR06527A1:CAS:528:DC%2BC28XhslOgsrfN
– reference: GuillermetOSelf-assembly of fivefold-symmetric molecules on a threefold-symmetric surfaceAngew. Chem. Int. Ed.2009481970197310.1002/anie.2008056891:CAS:528:DC%2BD1MXjsFCqsr4%3D
– reference: TaharaKTwo-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitationJ. Am. Chem. Soc.2006128166131662510.1021/ja06554411:CAS:528:DC%2BD28XhtlWmurrN
– reference: MaoJTunability of supramolecular kagome lattices of magnetic phthalocyanines using graphene-based moiré patterns as templatesJ. Am. Chem. Soc.2009131141361413710.1021/ja904907z1:CAS:528:DC%2BD1MXhtFCqtb%2FK
– reference: TóthLFOn shortest nets with meshes of equal areaActa Math. Acad. Sci. Hungar.19601136337012621410.1007/BF02020950
– reference: WasioNASelf-assembly of hydrogen-bonded two-dimensional quasicrystalsNature201450786892014Natur.507...86W10.1038/nature129931:CAS:528:DC%2BC2cXjs1Giu7g%3D
– reference: GutzlerRHalogen bonds in 2D supramolecular self-assembly of organic semiconductorsNanoscale201245965597110.1039/c2nr31648j1:CAS:528:DC%2BC38XhtlCjsbfI
– reference: KleyCSHighly adaptable two-dimensional metal-organic coordination networks on metal surfacesJ. Am. Chem. Soc.20121346072607510.1021/ja211749b1:CAS:528:DC%2BC38XkvVWmsr8%3D
– reference: ShangJAssembling molecular Sierpinski triangle fractalsNat. Chem.2015738939310.1038/nchem.22111:CAS:528:DC%2BC2MXls1Wqurk%3D
– reference: StannardABroken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilingsNat. Chem.2012411211710.1038/nchem.11991:CAS:528:DC%2BC3MXhsV2gtrvK
– reference: BluntMORandom tiling and topological defects in a two-dimensional molecular networkScience2008322107710812008Sci...322.1077B10.1126/science.11633381:CAS:528:DC%2BD1cXhtlGhu7fI
– reference: IacovellaCRKeysASGlotzerSCSelf-assembly of soft-matter quasicrystals and their approximantsProc. Natl. Acad. Sci. USA201110820935209402011PNAS..10820935I10.1073/pnas.1019763108
– reference: FanQSurface adatom mediated structural transformation in bromoarene monolayers: precursor phases in surface Ullmann reactionACS Nano2018122267227410.1021/acsnano.7b067871:CAS:528:DC%2BC1cXjtVWht7c%3D
– reference: KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861996PhRvB..5411169K10.1103/PhysRevB.54.111691:CAS:528:DyaK28Xms1Whu7Y%3D
– reference: GerbertDTegederPAdsorbate-mediated relaxation dynamics of hot electrons at metal/organic interfacesPhys. Rev. B2017961443042017PhRvB..96n4304G10.1103/PhysRevB.96.144304
– reference: BarkanKEngelMLifshitzRControlled self-assembly of periodic and aperiodic cluster crystalsPhys. Rev. Lett.20141130983042014PhRvL.113i8304B10.1103/PhysRevLett.113.0983041:CAS:528:DC%2BC2cXhslShtL7J
– reference: EcijaDFive-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assemblyProc. Natl. Acad. Sci. USA2013110667866812013PNAS..110.6678E10.1073/pnas.1222713110
– reference: BonifaziDMohnaniSLlanes-PallasASupramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfacesChem. Eur. J.2009157004702510.1002/chem.2009009001:CAS:528:DC%2BD1MXoslyjtL4%3D
– reference: RosselFModified herringbone reconstruction on Au(111) induced by self-assembled Azure A islandsSurf. Sci.2008602L115L11710.1016/j.susc.2008.06.0091:CAS:528:DC%2BD1cXpt1Khtr0%3D
– reference: CiesielskiASamorìPSupramolecular approaches to graphene: from self-assembly to molecule-assisted liquid-phase exfoliationAdv. Mater.2016286030605110.1002/adma.2015053711:CAS:528:DC%2BC28XjtlOjtbg%3D
– reference: GutzlerRHalogen bonds as stabilizing interactions in a chiral self-assembled molecular monolayerChem. Commun.2011479453945510.1039/c1cc13114a1:CAS:528:DC%2BC3MXpvFyktr4%3D
– reference: Grünbaum, B. & Shephard, G. C. Tilings and Patterns (W. H. Freeman, New York, 1986).
– reference: NewkomeGRNanoassembly of a fractal polymer: a molecular “Sierpinski hexagonal gasket”Science2006312178217852006Sci...312.1782N223757110.1126/science.11258941:CAS:528:DC%2BD28XmtVSnt78%3D
– reference: FaraggiMNBonding and charge transfer in metal–organic coordination networks on Au(111) with strong acceptor moleculesJ. Phys. Chem. C2012116245582456510.1021/jp306780n1:CAS:528:DC%2BC38XhsF2jsb7L
– reference: De FeyterSDe SchryverFCTwo-dimensional supramolecular self-assembly probed by scanning tunneling microscopyChem. Soc. Rev.20033213915010.1039/b206566p1:CAS:528:DC%2BD3sXjtFGmt7g%3D
– reference: BarthJVMolecular architectonic on metal surfacesAnnu. Rev. Phys. Chem.2007583754072007ARPC...58..375B10.1146/annurev.physchem.56.092503.1412591:CAS:528:DC%2BD2sXlslSit74%3D
– reference: Kepler, J. Harmonices Mundi (Johannes Planck, Linz, 1619).
– reference: ZhengQNFormation of halogen bond-based 2D supramolecular assemblies by electric manipulationJ. Am. Chem. Soc.20151376128613110.1021/jacs.5b022061:CAS:528:DC%2BC2MXnvV2lu78%3D
– reference: WuJArylamine-substituted hexa-peri-hexabenzocoronenes: facile synthesis and their potential applications as “Coaxial” hole-transport materialsAngew. Chem. Int. Ed.2004435331533510.1002/anie.2004601741:CAS:528:DC%2BD2cXptVanurw%3D
– reference: DavidSChelnokovALourtiozJMWide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilingsOpt. Lett.200025100110032000OptL...25.1001D10.1364/OL.25.0010011:STN:280:DC%2BD2sjjtVSrsg%3D%3D
– reference: Pickover, C. A. The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (Sterling, New York, 2012).
– reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.38651:CAS:528:DyaK28XmsVCgsbs%3D
– reference: UrgelJIQuasicrystallinity expressed in two-dimensional coordination networksNat. Chem.2016865766210.1038/nchem.25071:CAS:528:DC%2BC28XotV2nt7g%3D
– reference: Escher, M. C. The World of M. C. Escher (Harry N. Abrams, New York, 1991).
– reference: KobayashiKSyntheses of hexakis(4-functionalized-phenyl)benzenes and hexakis[4-(4‘-functionalized-phenylethynyl)phenyl]benzenes directed to host molecules for guest-inclusion networksJ. Org. Chem.20057074975210.1021/jo048521i1:CAS:528:DC%2BD2cXhtFCiu7fF
– reference: PivettaMBlumMCPattheyFSchneiderWDTwo-dimensional tiling by rubrene molecules self-assembled in supramolecular pentagons, hexagons, and heptagons on a Au(111) surfaceAngew. Chem. Int. Ed.2008471076107910.1002/anie.2007044791:CAS:528:DC%2BD1cXhvFSitLo%3D
– reference: OteroRElementary structural motifs in a random network of cytosine adsorbed on a Gold(111)Surf. Sci.20083193123151:CAS:528:DC%2BD1cXmt1OqtQ%3D%3D
– reference: FrankFCKasperJSComplex alloy structures regarded as sphere packings. 1. Definitions and basic principlesActa Cryst.19581118419010.1107/S0365110X580004871:CAS:528:DyaG1cXkvVCjsA%3D%3D
– reference: StöhrMSelf-assembly and two-dimensional spontaneous resolution of cyano-functionalized [7]helicenes on Cu(111)Angew. Chem. Int. Ed.2011509982998610.1002/anie.2011026271:CAS:528:DC%2BC3MXhtFKhs7vI
– reference: UedaKDoteraTGemmaTPhotonic band structure calculations of two-dimensional Archimedean tiling patternsPhys. Rev. B2007751951222007PhRvB..75s5122U10.1103/PhysRevB.75.1951221:CAS:528:DC%2BD2sXmtlGmt7k%3D
– reference: PfeifferCRPearceNChampnessNRComplexity of two-dimensional self-assembled arrays at surfacesChem. Commun.201753115281153910.1039/C7CC06110B1:CAS:528:DC%2BC2sXhsFylsb3K
– reference: BauertTBuilding 2D crystals from 5-fold-symmetric moleculesJ. Am. Chem. Soc.20091313460346110.1021/ja81010831:CAS:528:DC%2BD1MXisVCisb4%3D
– reference: WangCGChengZHQiuXHJiWUnusually high electron density in an intermolecular non-bonding region: Role of metal substrateChin. Chem. Lett.20172875976410.1016/j.cclet.2016.08.0041:CAS:528:DC%2BC28XhsV2js7vK
– reference: ZhouXSteering surface reaction dynamics with a self-assembly strategy: Ullmann coupling on metal surfacesAngew. Chem. Int. Ed.201756128521285610.1002/anie.2017050181:CAS:528:DC%2BC2sXhsVeru7bI
– reference: WangWSingle-molecule resolution of an organometallic intermediate in a surface-supported Ullmann coupling reactionJ. Am. Chem. Soc.2011133132641326710.1021/ja204956b1:CAS:528:DC%2BC3MXptFKmsLY%3D
– reference: RabeJPBuchholzSCommensurability and mobility in two-dimensional molecular patterns on graphiteScience19912534244271991Sci...253..424R10.1126/science.253.5018.4241:CAS:528:DyaK3MXlsVeitL8%3D
– reference: ReppJMeyerGRiederKHSnell’s law for surface electrons: refraction of an electron gas imaged in real spacePhys. Rev. Lett.2004920368032004PhRvL..92c6803R10.1103/PhysRevLett.92.0368031:CAS:528:DC%2BD2cXmvVegug%3D%3D
– reference: DavidSChelnikovALourtiozJMIsotropic photonic structures: Archimedean-like tilings and quasi-crystalsIEEE J. Quantum Electron.200137142714342001IJQE...37.1427D10.1109/3.9583651:CAS:528:DC%2BD3MXnsl2kt7o%3D
– reference: HanZImaging the halogen bond in self-assembled halogenbenzenes on silverScience20173582062102017Sci...358..206H10.1126/science.aai86251:CAS:528:DC%2BC2sXhs1aksLnP
– reference: YangZOrbital redistribution in molecular nanostructures mediated by metal–organic bondsACS Nano20148107151072210.1021/nn504431e1:CAS:528:DC%2BC2cXhsFOru73M
– reference: StelsonACBrittonWAWatsonCMLPhotonic crystal properties of self-assembled Archimedean tilingsJ. Appl. Phys.20171210231012017JAP...121b3101S10.1063/1.49734721:CAS:528:DC%2BC2sXotlCltg%3D%3D
– reference: GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G10.1063/1.33823441:CAS:528:DC%2BC3cXkvVyks7o%3D
– reference: MoultonBZaworotkoMJFrom molecules to crystal engineering: supramolecular isomerism and polymorphism in network solidsChem. Rev.20011011629165810.1021/cr99004321:CAS:528:DC%2BD3MXjtlyqtrg%3D
– reference: MarschallMRandom two-dimensional string networks based on divergent coordination assemblyNat. Chem.2010213113710.1038/nchem.5031:CAS:528:DC%2BC3cXos1Crtw%3D%3D
– reference: SyôziIStatistics of Kagomé latticeProg. Theor. Phys.195163063081951PThPh...6..306S4441810.1143/ptp/6.3.306
– reference: ShiZLinNPorphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surfaceJ. Am. Chem. Soc.20091315376537710.1021/ja900499b1:CAS:528:DC%2BD1MXjvFKlu7g%3D
– reference: BartelsLTailoring molecular layers at metal surfacesNat. Chem.20102879510.1038/nchem.5171:CAS:528:DC%2BC3cXos1Crsw%3D%3D
– reference: KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B199959175817751999PhRvB..59.1758K10.1103/PhysRevB.59.17581:CAS:528:DyaK1MXkt12nug%3D%3D
– reference: BasnarkovLUrumovVDiffusion on Archimedean latticesPhys. Rev. E2006730461162006PhRvE..73d6116B223140210.1103/PhysRevE.73.0461161:CAS:528:DC%2BD28XksFCkurw%3D
– reference: TersoffJHamannDRTheory of the scanning tunneling microscopePhys. Rev. B1985318058131985PhRvB..31..805T10.1103/PhysRevB.31.8051:CAS:528:DyaL2MXovVSmtA%3D%3D
– reference: JovanovićƉGajićRHingerlKRefraction and band isotropy in 2D square-like Archimedean photonic crystal latticesOpt. Express200816404840582008OExpr..16.4048J10.1364/OE.16.004048
– reference: ZhangYQComplex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursorNat. Chem.20181029630410.1038/nchem.29241:CAS:528:DC%2BC1cXhtlOlu70%3D
– reference: SchlickumUChiral Kagomé lattice from simple ditopic molecular bricksJ. Am. Chem. Soc.2008130117781178210.1021/ja80281191:CAS:528:DC%2BD1cXps1KnsL4%3D
– reference: MaksymovychPSorescuDCYatesJTJr.Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surfacePhys. Rev. Lett.2006971461032006PhRvL..97n6103M10.1103/PhysRevLett.97.1461031:CAS:528:DC%2BD28XhtVGktLzF
– volume: 131
  start-page: 3460
  year: 2009
  ident: 7323_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8101083
– volume: 43
  start-page: 5331
  year: 2004
  ident: 7323_CR44
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200460174
– ident: 7323_CR1
– volume: 8
  start-page: 657
  year: 2016
  ident: 7323_CR36
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2507
– volume: 113
  start-page: 098304
  year: 2014
  ident: 7323_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.098304
– volume: 48
  start-page: 1970
  year: 2009
  ident: 7323_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200805689
– volume: 56
  start-page: 12852
  year: 2017
  ident: 7323_CR61
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705018
– volume: 2
  start-page: 87
  year: 2010
  ident: 7323_CR6
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.517
– volume: 137
  start-page: 6128
  year: 2015
  ident: 7323_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02206
– volume: 50
  start-page: 9982
  year: 2011
  ident: 7323_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102627
– volume: 11
  start-page: 184
  year: 1958
  ident: 7323_CR4
  publication-title: Acta Cryst.
  doi: 10.1107/S0365110X58000487
– volume: 47
  start-page: 1076
  year: 2008
  ident: 7323_CR38
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200704479
– volume: 2
  start-page: 131
  year: 2010
  ident: 7323_CR31
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.503
– volume: 128
  start-page: 15384
  year: 2006
  ident: 7323_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065904k
– volume: 11
  start-page: 363
  year: 1960
  ident: 7323_CR3
  publication-title: Acta Math. Acad. Sci. Hungar.
  doi: 10.1007/BF02020950
– volume: 58
  start-page: 375
  year: 2007
  ident: 7323_CR5
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.56.092503.141259
– volume: 4
  start-page: 112
  year: 2012
  ident: 7323_CR33
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1199
– volume: 110
  start-page: 6678
  year: 2013
  ident: 7323_CR37
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1222713110
– volume: 131
  start-page: 5376
  year: 2009
  ident: 7323_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900499b
– ident: 7323_CR2
– volume: 312
  start-page: 1782
  year: 2006
  ident: 7323_CR28
  publication-title: Science
  doi: 10.1126/science.1125894
– volume: 28
  start-page: 759
  year: 2017
  ident: 7323_CR60
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2016.08.004
– volume: 121
  start-page: 023101
  year: 2017
  ident: 7323_CR13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4973472
– volume: 53
  start-page: 11528
  year: 2017
  ident: 7323_CR34
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06110B
– volume: 10
  start-page: 5131
  year: 2016
  ident: 7323_CR57
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00322
– volume: 12
  start-page: 2267
  year: 2018
  ident: 7323_CR48
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06787
– volume: 319
  start-page: 312
  year: 2008
  ident: 7323_CR22
  publication-title: Surf. Sci.
– volume: 322
  start-page: 1077
  year: 2008
  ident: 7323_CR30
  publication-title: Science
  doi: 10.1126/science.1163338
– volume: 134
  start-page: 6072
  year: 2012
  ident: 7323_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211749b
– volume: 130
  start-page: 11778
  year: 2008
  ident: 7323_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8028119
– volume: 15
  start-page: 7004
  year: 2009
  ident: 7323_CR42
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200900900
– volume: 92
  start-page: 036803
  year: 2004
  ident: 7323_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.036803
– volume: 132
  start-page: 154104
  year: 2010
  ident: 7323_CR69
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 47
  start-page: 9453
  year: 2011
  ident: 7323_CR40
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc13114a
– volume: 253
  start-page: 424
  year: 1991
  ident: 7323_CR16
  publication-title: Science
  doi: 10.1126/science.253.5018.424
– volume: 28
  start-page: 6030
  year: 2016
  ident: 7323_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505371
– volume: 31
  start-page: 805
  year: 1985
  ident: 7323_CR70
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.31.805
– volume: 116
  start-page: 24558
  year: 2012
  ident: 7323_CR50
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp306780n
– volume: 77
  start-page: 3865
  year: 1996
  ident: 7323_CR65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 10
  start-page: 296
  year: 2018
  ident: 7323_CR27
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2924
– ident: 7323_CR7
– volume: 37
  start-page: 1427
  year: 2001
  ident: 7323_CR10
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.958365
– volume: 507
  start-page: 86
  year: 2014
  ident: 7323_CR18
  publication-title: Nature
  doi: 10.1038/nature12993
– volume: 52
  start-page: 2836
  year: 2013
  ident: 7323_CR64
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201208397
– volume: 97
  start-page: 146103
  year: 2006
  ident: 7323_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.146103
– volume: 59
  start-page: 1758
  year: 1999
  ident: 7323_CR67
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 128
  start-page: 16613
  year: 2006
  ident: 7323_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0655441
– volume: 358
  start-page: 206
  year: 2017
  ident: 7323_CR47
  publication-title: Science
  doi: 10.1126/science.aai8625
– volume: 108
  start-page: 20935
  year: 2011
  ident: 7323_CR62
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1019763108
– volume: 54
  start-page: 11169
  year: 1996
  ident: 7323_CR68
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 75
  start-page: 195122
  year: 2007
  ident: 7323_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.195122
– volume: 70
  start-page: 749
  year: 2005
  ident: 7323_CR45
  publication-title: J. Org. Chem.
  doi: 10.1021/jo048521i
– volume: 602
  start-page: L115
  year: 2008
  ident: 7323_CR53
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2008.06.009
– volume: 8
  start-page: 10715
  year: 2014
  ident: 7323_CR51
  publication-title: ACS Nano
  doi: 10.1021/nn504431e
– volume: 16
  start-page: 4048
  year: 2008
  ident: 7323_CR11
  publication-title: Opt. Express
  doi: 10.1364/OE.16.004048
– volume: 6
  start-page: 306
  year: 1951
  ident: 7323_CR35
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/ptp/6.3.306
– ident: 7323_CR8
– volume: 50
  start-page: 17953
  year: 1994
  ident: 7323_CR66
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 73
  start-page: 046116
  year: 2006
  ident: 7323_CR14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.73.046116
– volume: 7
  start-page: 389
  year: 2015
  ident: 7323_CR29
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2211
– volume: 131
  start-page: 14136
  year: 2009
  ident: 7323_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904907z
– volume: 25
  start-page: 1001
  year: 2000
  ident: 7323_CR9
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.001001
– volume: 4
  start-page: 5965
  year: 2012
  ident: 7323_CR41
  publication-title: Nanoscale
  doi: 10.1039/c2nr31648j
– volume: 32
  start-page: 139
  year: 2003
  ident: 7323_CR43
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b206566p
– volume: 46
  start-page: 700
  year: 2007
  ident: 7323_CR52
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200603325
– volume: 8
  start-page: 19004
  year: 2016
  ident: 7323_CR58
  publication-title: Nanoscale
  doi: 10.1039/C6NR06527A
– volume: 96
  start-page: 144304
  year: 2017
  ident: 7323_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.144304
– volume: 70
  start-page: 205426
  year: 2004
  ident: 7323_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.205426
– volume: 101
  start-page: 1629
  year: 2001
  ident: 7323_CR15
  publication-title: Chem. Rev.
  doi: 10.1021/cr9900432
– volume: 133
  start-page: 13264
  year: 2011
  ident: 7323_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204956b
SSID ssj0000391844
Score 2.4753668
Snippet Molecular tessellations are often discovered serendipitously, and the mechanisms by which specific molecules can be tiled seamlessly to form periodic...
Molecular tessellations of complex tilings are difficult to design and construct. Here, the authors show that molecular tessellations can be formed from a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4871
SubjectTerms 147/138
639/638/298
639/638/541/966
639/638/542
Benzene
Chemistry
Construction
Crystal lattices
Crystals
Domains
Fabrication
Graphene
Humanities and Social Sciences
Hydrocarbons
Laboratories
multidisciplinary
Parallelograms
Phases
Photonic crystals
Physics
Polygons
Science
Science (multidisciplinary)
Self-assembly
Self-similarity
Similarity
Symmetry
Tessellation
Tiles
Triangles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9F23aVCht1bEkmw9jm1ICD30lEBuQpZkUmjswm4oufU_9B_ml2RG0m53-7z0ttgy1s5D-sYz-oaQ113EkzycM-9bDQGKCswrEZkYee99j3tarvL9qE7Oug_n_flGqy-sCSv0wEVwB0LBaxTnUZqhw5wUPN5Zo4KHWHzQmQkU9ryNYCqvwdJC6NLVUzKtNAeLLq8JLTcMrFpIprZ2okzY_zuU-Wux5E8Z07wRHd8n9yqCpO_KzB-QO2l6SHZLT8nrR2Q-_TqziJz9hW-DIpbEEifUAB2u6eWqIS5dwoqwoGGuJLIpUjxsQi_we06abr59r7-on-LG1csEgJ1OpX588ZicHR-dHp6w2lWBBQhWlkxH21qjE08iqARwqx1FB8JMUkelgtY-gmOrMbWDR94jxAyj9IAkRohFtJdPyM40T-kZoaAOZaPywgCM8Yg17aiDtjyY0LZj3xC-krALlXIcO198djn1LY0rWnGgFZe14lRD3qyf-VIIN_46-j0qbj0SybLzBTAhV03I_cuEGrK3UrurHrxwgkuEhvCuhrxa3wbfw4SKn9J8VccA4uttQ54WK1nPBDPQHMLFhugt-9ma6vad6dNF5vfGIztGwn97u7K0H9P6syie_w9RvCB3BboI1jnaPbID5pdeAupaDvvZwW4BjP8nNw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6VIgQXBOUvUJCRuEEgjhM7PiAEFVWFBKeu1JvltR1aqU2gWQR74x14Q56EGcdZWFh6ixxHcTzf2N9kxjMATypPJ3k4z60tFBoo0uVWlj4vW15bW9OeFqN8P8iDWfXuqD7agqncUZrAYaNpR_WkZuenz799Xr5ChX85HhlvXgxVVPeCNzkCthS5vASXcWdSpKjvE92PK7PQaNBU6ezM5kfX9qeYxn8T9_w3hPIvP2rcnvZvwPXEK9nrEQg3YSt0O3BlrDS53IGre1NhN2yNUZ9uuAX94dc-95Tff8zNwYh3UjgUSYvNl-xsKp7LFrh6DMz1KeFs8IwOprBj-vcTup_ff6QrZjv_R-tZwHll3RhrPtyG2f7bw72DPFVgyB0aNotceV3oRgUeSicDUrOiLStb6CCUl9IpZT0uArINxdxSjiTiF62wyDpatFuUFXdgu-u7cA-YrtEQ99KWDVIeS7xUt8opzV3jiqKtM-DTvBuX0pNTlYxTE93kojGjrAzKykRZGZnB09Uzn8bkHBf2fkPiXPWkxNqxoT__aJKemlIiqiXnXjTzilygiNZKN9LhkMVcVRnsTmAwE1hNyQXRSHxXBo9Xt1Gq5HyxXei_pD7IDmudwd0RO6uRkLeao2mZgVpD1dpQ1-90J8cxFzgd72kEftuzCX-_h_X_qbh_8Vc8gGslqQRFO-pd2EZghYfIvRbzR1GhfgHoICn-
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtUwEB2VIiQ2FW8CBRmJHVjEdmI7S7iiqliwaqXuLMd2KBJNKu5FqLv-A3_IlzDjPOBCQWIXJY4y8czEZzIzxwDPq0idPEJw70uDAYoO3GsZuexE7X1Na1qu8n2vD4-rdyf1yQ7IuRcmF-1nSsv8mZ6rw16tq-zSpbAcjVIqrq_BdaJuJ6te6dXyX4UYz21VTf0xpbJX3Lq1BmWq_qvw5Z9lkr_lSvMSdHAL9ibsyF6P0t6GndTfgRvjbpIXd2E4-jrwSGz9I9MGIxRJxU0096y9YGfzVrhsg9-CNQvDRB-bIqM2E3ZKf3JS__3y23TEfB9_OXuWEKqzfqwcX9-D44O3R6tDPu2nwAOGKRtuYlM21iSRZNAJgVbZycqXTVImah2M8RFdWnepbD0xHhFa6JRHDNFhFGK8ug-7_dCnh8CaGsPqqL20CGA8ocymM8E0IthQll1dgJhn2IWJbJz2vPjkctJbWTdqxaFWXNaK0wW8WO45H6k2_jn6DSluGUk02fnE8PmDm8zGSY02qoWIyrYVJTTR9qrG6oAiq9ZUBezPaneT766dFIpAIT6rgGfLZfQ6SqX4Pg1fpjGI9eqmgAejlSySUO5ZYKBYgNmyny1Rt6_0H08zszc161iF7_ZytrSfYv19Kh793_DHcFOSM1AtY7MPu2ho6Qkiq037NLvSDzt5HdY
  priority: 102
  providerName: Springer Nature
Title Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks
URI https://link.springer.com/article/10.1038/s41467-018-07323-6
https://www.ncbi.nlm.nih.gov/pubmed/30451862
https://www.proquest.com/docview/2135623018
https://www.proquest.com/docview/2135638959
https://pubmed.ncbi.nlm.nih.gov/PMC6242836
https://doaj.org/article/26ebe611d38b495497104986ca093b74
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgE4IXBOMWGJWReANrceLYzhPqqpWpEhOCTepb5NoOQ2LJIEVob_wH_iG_hHMcJ6Nc9pJWjls5Ocf2dy7-DiHPhcOTPJwzY1IFBoq0zMjMsazmhTEF7mkhy_dIHp6IxbJYRodbF9MqhzUxLNSutegj38t4jlt1yvWr888Mq0ZhdDWW0LhOtpG6DFO61FKNPhZkP9dCxLMyaa73OhFWBvgXBrqd5Uxu7EeBtv9fWPPvlMk_4qZhO5rfIbcjjqTTXvB3yTXf7JAbfWXJix1yczYUcoPWkOVpu3ukPf7WMod8_j0XB0WcielPKB26uqBnQ7FcuobVoqO2jQSz3lE8iEJP0dfjm5_ff8Rv1DTut9YzD2CeNn1ueXefnMwPjmeHLFZcYBYMmTVTrkxLrTz3mZUeoFhaZ8Kkpc-Vk9IqZRxMeln7dGWQEwnxRJ0bQBk12CnK5A_IVtM2_hGhZQGGt5Mm0wBxDOLQslZWldxqm6Z1kRA-vPfKRjpyrIrxqQph8VxXvawqkFUVZFXJhLwYf3Pek3Fc2XsfxTn2RCLt0NB--VDFeVllErRYcu5yvRIY8gTtFKWWFoacr5RIyO6gDFWc3V11qYsJeTbeBqlisMU0vv0a-wAaLMqEPOx1ZxwJRqc5mJIJURtatTHUzTvNx9PA_Y3HeXQOz_Zy0L_LYf3_VTy--imekFsZTgnMbix3yRYoln8KWGu9moQJBVc9fz0h29Pp4v0CPvcPjt6-g9aZnE2CFwOub4T-BRGnLYE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKULkgKFACBYwEJ4gaO4mdHBCCQrWlpaettDfjtR2KRJNCFlV74x_4Dz6KL2HGSbYsj956ixwnmmTenhfA48xRJQ_nsTGJQgdF2thI4WJR8dyYnHRayPI9kKPD7O0kn6zAj6EWhtIqB5kYBLVrLJ2RbwmekqpOePHi5HNMU6MoujqM0OjIYs_PT9Fla5_vvkb8PhFi5814exT3UwVii8b6LFauTNDR9twLKz2aG0klMpOUPlVOSquUcUjYsvLJ1FDfH9KZVWpQk1ZoiyuT4nsvwWVUvAlxlJqoxZkOdVsvsqyvzUnSYqvNgiRCqGPkJZHGckn_hTEB_7Jt_07R_CNOG9TfznW41tut7GVHaDdgxdfrcKWbZDlfh7XtYXAcroasUtvehGZ82sSO5gd0vT8Y2bWUbkXUwKZzdjwM52UzlE4ts03f0NY7RoUv7IjOlnz989v3_oqZ2v22euzReWB1l8ve3oLDC8HFbVitm9rfAVbm6Og7aUSBJpUhu7eslFUlt4VNkiqPgA__Xdu-_TlN4fikQxg-LXSHK4240gFXWkbwdPHMSdf849zdrwidi53UuDssNF8-6F4OaCGRayTnLi2mGYVYkRuyspAWQU6nKotgcyAG3UuTVp_RfgSPFrcRqxTcMbVvvvZ70PrMywg2OtpZQELRcI6uawRqiaqWQF2-U388Cr3GqXyoSPHbng30dwbW_3_F3fO_4iGsjcbv9vX-7sHePbgqiD0os7LchFUkMn8f7bzZ9EFgLgbvL5qbfwFqSWHo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIn4uCAqFQAEjwQmijZ3ETg4IQcuqpaji0Ep7M17boUg0KWRRtTfegbfhcXgSZpxky_LTW28rx1nZmb9vPOMZgMeZo5s8nMfGJAodFGljI4WLRcVzY3KyaSHLd09uH2RvJvlkBX4Md2EorXLQiUFRu8bSGflI8JRMdcKLUdWnRbzbGr84_hxTBymKtA7tNDoW2fXzE3Tf2uc7W0jrJ0KMX-9vbsd9h4HYInCfxcqVCTrdnnthpUfokVQiM0npU-WktEoZh0wuK59MDdUAIvtZpQataoW4XJkU__cCXFS4W5IxNVGL8x2qvF5kWX9PJ0mLUZsFrYQ7iFGuRBrLJVsYWgb8C-f-na75R8w2mMLxdbjWY1j2smO6G7Di6zW41HW1nK_Blc2hiRyOhgxT296EZv-kiR31EujqgDDCuJR6RZzBpnN2NDTqZTPUVC2zTV_c1jtGl2DYIZ0z-frnt-_9L2Zq99vokUdHgtVdXnt7Cw7OhRbrsFo3tb8DrMzR6XfSiALhlSEMXFbKqpLbwiZJlUfAh--ubV8KnTpyfNIhJJ8WuqOVRlrpQCstI3i6eOe4KwRy5uxXRM7FTCriHQaaLx90rxO0kChBknOXFtOMwq0oGVlZSItLTqcqi2BjYAbda5ZWn8pBBI8Wj5GqFOgxtW--9nMQieZlBLc73lmshCLjHN3YCNQSVy0tdflJ_fEw1B2nq0RFint7NvDf6bL-_ynunr2Lh3AZ5Vi_3dnbvQdXBUkHJVmWG7CKPObvI-SbTR8E2WLw_ryF-RcR8GYe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+tessellation+by+molecular+tiles+constructed+from+halogen%E2%80%93halogen+and+halogen%E2%80%93metal+networks&rft.jtitle=Nature+communications&rft.au=Cheng%2C+Fang&rft.au=Xue-Jun%2C+Wu&rft.au=Hu%2C+Zhixin&rft.au=Lu%2C+Xuefeng&rft.date=2018-11-19&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=9&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-018-07323-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon