Early cellular innate immune responses drive Zika viral persistence and tissue tropism in pigtail macaques

The immunological and virological events that contribute to the establishment of Zika virus (ZIKV) infection in humans are unclear. Here, we show that robust cellular innate immune responses arising early in the blood and tissues in response to ZIKV infection are significantly stronger in males and...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 3371 - 11
Main Authors O’Connor, Megan A., Tisoncik-Go, Jennifer, Lewis, Thomas B., Miller, Charlene J., Bratt, Debra, Moats, Cassie R., Edlefsen, Paul T., Smedley, Jeremy, Klatt, Nichole R., Gale, Michael, Fuller, Deborah Heydenburg
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.08.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The immunological and virological events that contribute to the establishment of Zika virus (ZIKV) infection in humans are unclear. Here, we show that robust cellular innate immune responses arising early in the blood and tissues in response to ZIKV infection are significantly stronger in males and correlate with increased viral persistence. In particular, early peripheral blood recruitment of plasmacytoid dendritic cells and higher production of monocyte chemoattractant protein (MCP-1) correspond with greater viral persistence and tissue dissemination. We also identify non-classical monocytes as primary in vivo targets of ZIKV infection in the blood and peripheral lymph node. These results demonstrate the potential differences in ZIKV pathogenesis between males and females and a key role for early cellular innate immune responses in the blood in viral dissemination and ZIKV pathogenesis. The immune response to Zika virus is required to curtail the infection and avoid immunopathology, but may be involved in the associated pathophysiology. Here the authors show that viral persistence and tissue tropism is shaped by an early innate immune response in a pigtail macaque model of infection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-05826-w