MiR-520b as a novel molecular target for suppressing stemness phenotype of head-neck cancer by inhibiting CD44

Cancer stem cells preferentially acquire the specific characteristics of stress tolerance and high mobility, allowing them to progress to a therapy-refractive state. To identify a critical molecule to regulate cancer stemness is indispensable to erratically cure cancer. In this study, we identified...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 2042 - 14
Main Authors Lu, Ya-Ching, Cheng, Ann-Joy, Lee, Li-Yu, You, Guo-Rung, Li, Yan-Liang, Chen, Hsin-Ying, Chang, Joseph T.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.05.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cancer stem cells preferentially acquire the specific characteristics of stress tolerance and high mobility, allowing them to progress to a therapy-refractive state. To identify a critical molecule to regulate cancer stemness is indispensable to erratically cure cancer. In this study, we identified miR-520b as a novel molecular target to suppress head-neck cancer (HNC) with stemness phenotype. MiR-520b inhibited cellular migration and invasion via the mechanism of epithelial-mesenchymal transition. It also sensitized cells to therapeutic drug and irradiation. Significantly, miR-520b suppressed spheroid cell formation, as well as reduced expressions of multiple stemness regulators (Nestin, Twist, Nanog, Oct4). The CD44 molecule was identified as a direct target of miR-520b, as shown by the reverse correlative expressions, the response to miR-520 modulation, the luciferase reporter assay, and the functional rescue analyses. These cellular results were confirmed by a tumor xenograft mice study. Administration of miR-520b dramatically restrained tumorigenesis and liver colonization. Conversely, miR-520b silencing led to an acceleration of tumor growth. Taken together, our study demonstrated that miR-520b inhibits the malignancy of HNC through regulation of cancer stemness conversion by targeting CD44. MiR-520b may serve as an emerging therapeutic target that may be further developed for the intervention of refractory HNC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-02058-8