Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest

In the absence of external stimuli, neural activity continuously evolves from one configuration to another. Whether these transitions or explorations follow some underlying arrangement or lack a predictable ordered plan remains to be determined. Here, using fMRI data from highly sampled individuals...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 4791 - 19
Main Authors Saggar, Manish, Shine, James M., Liégeois, Raphaël, Dosenbach, Nico U. F., Fair, Damien
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the absence of external stimuli, neural activity continuously evolves from one configuration to another. Whether these transitions or explorations follow some underlying arrangement or lack a predictable ordered plan remains to be determined. Here, using fMRI data from highly sampled individuals (~5 hours of resting-state data per individual), we aimed to reveal the rules that govern transitions in brain activity at rest. Our Topological Data Analysis based Mapper approach characterized a highly visited transition state of the brain that acts as a switch between different neural configurations to organize the spontaneous brain activity. Further, while the transition state was characterized by a uniform representation of canonical resting-state networks (RSNs), the periphery of the landscape was dominated by a subject-specific combination of RSNs. Altogether, we revealed rules or principles that organize spontaneous brain activity using a precision dynamics approach. Although spontaneous brain activity is complex and clinically relevant, it is still unclear whether transitions in resting brain activity follow an underlying arrangement or whether they are unpredictable. In this work, the authors revealed a transition state of the brain that acts like a switch between states and forms the basis for the continuous evolution of brain activity patterns at rest.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32381-2