A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a highly conserved E3 ubiquitin ligase from plants to animals and acts as a central repressor of photomorphogenesis in plants. SUPPRESSOR OF PHYA-105 1 family members (SPA1-SPA4) directly interact with COP1 and enhance COP1 activity. Despite the presence of...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 4216 - 17
Main Authors Paik, Inyup, Chen, Fulu, Ngoc Pham, Vinh, Zhu, Ling, Kim, Jeong-Il, Huq, Enamul
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.09.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a highly conserved E3 ubiquitin ligase from plants to animals and acts as a central repressor of photomorphogenesis in plants. SUPPRESSOR OF PHYA-105 1 family members (SPA1-SPA4) directly interact with COP1 and enhance COP1 activity. Despite the presence of a kinase domain at the N-terminus, no COP1-independent role of SPA proteins has been reported. Here we show that SPA1 acts as a serine/threonine kinase and directly phosphorylates PIF1 in vitro and in vivo. SPAs are necessary for the light-induced phosphorylation, ubiquitination and subsequent degradation of PIF1. Moreover, the red/far-red light photoreceptor phyB interacts with SPA1 through its C-terminus and enhances the recruitment of PIF1 for phosphorylation. These data provide a mechanistic view on how the COP1-SPA complexes serve as an example of a cognate kinase-E3 ligase complex that selectively triggers rapid phosphorylation and removal of its substrates, and how phyB modulates this process to promote photomorphogenesis. SPA proteins repress plant photomorphogenesis by promoting the E3 ligase activity of COP1. Here the authors show that SPAs also act as serine/threonine kinase and are required for phyB-mediated light-dependent phosphorylation and degradation of the PIF1 transcription factor.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12110-y