Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations

Unhealthful dietary habits are leading risk factors for life-altering diseases and mortality. Large-scale biobanks now enable genetic analysis of traits with modest heritability, such as diet. We perform a genomewide association on 85 single food intake and 85 principal component-derived dietary pat...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 1467
Main Authors Cole, Joanne B., Florez, Jose C., Hirschhorn, Joel N.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.03.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Unhealthful dietary habits are leading risk factors for life-altering diseases and mortality. Large-scale biobanks now enable genetic analysis of traits with modest heritability, such as diet. We perform a genomewide association on 85 single food intake and 85 principal component-derived dietary patterns from food frequency questionnaires in UK Biobank. We identify 814 associated loci, including olfactory receptor associations with fruit and tea intake; 136 associations are only identified using dietary patterns. Mendelian randomization suggests our top healthful dietary pattern driven by wholemeal vs. white bread consumption is causally influenced by factors correlated with education but is not strongly causal for coronary artery disease or type 2 diabetes. Overall, we demonstrate the value in complementary phenotyping approaches to complex dietary datasets, and the utility of genomic analysis to understand the relationships between diet and human health. The choice of food intake is at least partially influenced by genetics, even though the effect sizes appear rather modest. Here, Cole et al. perform GWAS for food intake (85 individual food items and 85 derived dietary patterns) and test potential causal relationships with cardiometabolic traits using Mendelian randomization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15193-0