Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at the cell surface and syncytia formation

The Spike (S) protein of SARS-CoV-2 binds ACE2 to direct fusion with host cells. S comprises a large external domain, a transmembrane domain, and a short cytoplasmic tail. Understanding the intracellular trafficking of S is relevant to SARS-CoV-2 infection, and to vaccines expressing full-length S f...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 5333
Main Authors Cattin-Ortolá, Jérôme, Welch, Lawrence G., Maslen, Sarah L., Papa, Guido, James, Leo C., Munro, Sean
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.09.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Spike (S) protein of SARS-CoV-2 binds ACE2 to direct fusion with host cells. S comprises a large external domain, a transmembrane domain, and a short cytoplasmic tail. Understanding the intracellular trafficking of S is relevant to SARS-CoV-2 infection, and to vaccines expressing full-length S from mRNA or adenovirus vectors. Here we report a proteomic screen for cellular factors that interact with the cytoplasmic tail of S. We confirm interactions with the COPI and COPII vesicle coats, ERM family actin regulators, and the WIPI3 autophagy component. The COPII binding site promotes exit from the endoplasmic reticulum, and although binding to COPI should retain S in the early Golgi where viral budding occurs, there is a suboptimal histidine residue in the recognition motif. As a result, S leaks to the surface where it accumulates and can direct the formation of multinucleate syncytia. Thus, the trafficking signals in the tail of S indicate that syncytia play a role in the SARS-CoV-2 lifecycle. The Spike protein of SARS-CoV-2 has a C-terminal cytoplasmic tail. Here the authors show that this tail binds trafficking machinery via sequences that appear optimised to ensure that Spike accumulates at the site of viral budding in the Golgi but that some can also traffic to the cell surface to induce syncytia formation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25589-1