Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework
The use of Alzheimer's disease (AD) biomarkers is supported in diagnostic criteria, but their maturity for clinical routine is still debated. Here, we evaluate brain fluorodeoxyglucose positron emission tomography (FDG PET), a measure of cerebral glucose metabolism, as a biomarker to identify c...
Saved in:
Published in | Neurobiology of aging Vol. 52; pp. 183 - 195 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The use of Alzheimer's disease (AD) biomarkers is supported in diagnostic criteria, but their maturity for clinical routine is still debated. Here, we evaluate brain fluorodeoxyglucose positron emission tomography (FDG PET), a measure of cerebral glucose metabolism, as a biomarker to identify clinical and prodromal AD according to the framework suggested for biomarkers in oncology, using homogenous criteria with other biomarkers addressed in parallel reviews. FDG PET has fully achieved phase 1 (rational for use) and most of phase 2 (ability to discriminate AD subjects from healthy controls or other forms of dementia) aims. Phase 3 aims (early detection ability) are partly achieved. Phase 4 studies (routine use in prodromal patients) are ongoing, and only preliminary results can be extrapolated from retrospective observations. Phase 5 studies (quantify impact and costs) have not been performed. The results of this study show that specific efforts are needed to complete phase 3 evidence, in particular comparing and combining FDG PET with other biomarkers, and to properly design phase 4 prospective studies as a basis for phase 5 evaluations.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0197-4580 1558-1497 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2016.03.033 |