Functional significance of U2AF1 S34F mutations in lung adenocarcinomas

The functional role of U2AF1 mutations in lung adenocarcinomas (LUADs) remains incompletely understood. Here, we report a significant co-occurrence of U2AF1 S34F mutations with ROS1 translocations in LUADs. To characterize this interaction, we profiled effects of S34F on the transcriptome-wide distr...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 5712 - 13
Main Authors Esfahani, Mohammad S., Lee, Luke J., Jeon, Young-Jun, Flynn, Ryan A., Stehr, Henning, Hui, Angela B., Ishisoko, Noriko, Kildebeck, Eric, Newman, Aaron M., Bratman, Scott V., Porteus, Matthew H., Chang, Howard Y., Alizadeh, Ash A., Diehn, Maximilian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.12.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The functional role of U2AF1 mutations in lung adenocarcinomas (LUADs) remains incompletely understood. Here, we report a significant co-occurrence of U2AF1 S34F mutations with ROS1 translocations in LUADs. To characterize this interaction, we profiled effects of S34F on the transcriptome-wide distribution of RNA binding and alternative splicing in cells harboring the ROS1 translocation. Compared to its wild-type counterpart, U2AF1 S34F preferentially binds and modulates splicing of introns containing CAG trinucleotides at their 3′ splice junctions. The presence of S34F caused a shift in cross-linking at 3′ splice sites, which was significantly associated with alternative splicing of skipped exons. U2AF1 S34F induced expression of genes involved in the epithelial-mesenchymal transition (EMT) and increased tumor cell invasion. Finally, S34F increased splicing of the long over the short SLC34A2-ROS1 isoform, which was also associated with enhanced invasiveness. Taken together, our results suggest a mechanistic interaction between mutant U2AF1 and ROS1 in LUAD. The authors report a co-occurrence of the U2AF1 S34F splicing factor mutation and ROS1 translocations in lung adenocarcinomas and profile effects of S34F on transcriptome-wide RNA binding. They further show that U2AF1 S34F enhances invasive potential and alters splicing of ROS1 fusion transcripts
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-13392-y