Developmental kinetics and transcriptome dynamics of stem cell specification in the spermatogenic lineage

Continuity, robustness, and regeneration of cell lineages relies on stem cell pools that are established during development. For the mammalian spermatogenic lineage, a foundational spermatogonial stem cell (SSC) pool arises from prospermatogonial precursors during neonatal life via mechanisms that r...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 2787 - 14
Main Authors Law, Nathan C., Oatley, Melissa J., Oatley, Jon M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.06.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Continuity, robustness, and regeneration of cell lineages relies on stem cell pools that are established during development. For the mammalian spermatogenic lineage, a foundational spermatogonial stem cell (SSC) pool arises from prospermatogonial precursors during neonatal life via mechanisms that remain undefined. Here, we mapped the kinetics of this process in vivo using a multi-transgenic reporter mouse model, in silico with single-cell RNA sequencing, and functionally with transplantation analyses to define the SSC trajectory from prospermatogonia. Outcomes revealed that a heterogeneous prospermatogonial population undergoes dynamic changes during late fetal and neonatal development. Differential transcriptome profiles predicted divergent developmental trajectories from fetal prospermatogonia to descendant postnatal spermatogonia. Furthermore, transplantation analyses demonstrated that a defined subset of fetal prospermatogonia is fated to function as SSCs. Collectively, these findings suggest that SSC fate is preprogrammed within a subset of fetal prospermatogonia prior to building of the foundational pool during early neonatal development. In neonatal testes, prospermatogonia generate both spermatogonia for the first wave of spermatogenesis and spermatogonial stem cells (SSCs) for maintenance of spermatogenesis in males. Here the authors characterize the development of mouse SSCs from prospermatogonia using single-cell RNA-seq and transplantation assays.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10596-0