Controllable field-free switching of perpendicular magnetization through bulk spin-orbit torque in symmetry-broken ferromagnetic films
Programmable magnetic field-free manipulation of perpendicular magnetization switching is essential for the development of ultralow-power spintronic devices. However, the magnetization in a centrosymmetric single-layer ferromagnetic film cannot be switched directly by passing an electrical current i...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 2473 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.04.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Programmable magnetic field-free manipulation of perpendicular magnetization switching is essential for the development of ultralow-power spintronic devices. However, the magnetization in a centrosymmetric single-layer ferromagnetic film cannot be switched directly by passing an electrical current in itself. Here, we demonstrate a repeatable bulk spin-orbit torque (SOT) switching of the perpendicularly magnetized CoPt alloy single-layer films by introducing a composition gradient in the thickness direction to break the inversion symmetry. Experimental results reveal that the bulk SOT-induced effective field on the domain walls leads to the domain walls motion and magnetization switching. Moreover, magnetic field-free perpendicular magnetization switching caused by SOT and its switching polarity (clockwise or counterclockwise) can be reversibly controlled in the IrMn/Co/Ru/CoPt heterojunctions based on the exchange bias and interlayer exchange coupling. This unique composition gradient approach accompanied with electrically controllable SOT magnetization switching provides a promising strategy to access energy-efficient control of memory and logic devices.
A major challenge of spintronics is achieving magnetic field free electrical control of magnetisation. Here, Xie et al. achieve perpendicular magnetisation switching in a CoPt alloy, breaking inversion symmetry by varying the composition of the alloy in the growth direction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-22819-4 |