A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping

Functional neuroimaging commands a dominant role in current neuroscience research. However its use in bedside clinical and certain neuro-scientific studies has been limited because the current tools lack the combination of being non-invasive, non-ionizing and portable while maintaining moderate reso...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 61; no. 4; pp. 1120 - 1128
Main Authors Eggebrecht, Adam T., White, Brian R., Ferradal, Silvina L., Chen, Chunxiao, Zhan, Yuxuan, Snyder, Abraham Z., Dehghani, Hamid, Culver, Joseph P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.07.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Functional neuroimaging commands a dominant role in current neuroscience research. However its use in bedside clinical and certain neuro-scientific studies has been limited because the current tools lack the combination of being non-invasive, non-ionizing and portable while maintaining moderate resolution and localization accuracy. Optical neuroimaging satisfies many of these requirements, but, until recent advances in high-density diffuse optical tomography (HD-DOT), has been hampered by limited resolution. While early results of HD-DOT have been promising, a quantitative voxel-wise comparison and validation of HD-DOT against the gold standard of functional magnetic resonance imaging (fMRI) has been lacking. Herein, we provide such an analysis within the visual cortex using matched visual stimulation protocols in a single group of subjects (n=5) during separate HD-DOT and fMRI scanning sessions. To attain the needed voxel-to-voxel co-registration between HD-DOT and fMRI image spaces, we implemented subject-specific head modeling that incorporated MRI anatomy, detailed segmentation, and alignment of source and detector positions. Comparisons of the visual responses found an average localization error between HD-DOT and fMRI of 4.4+/−1mm, significantly less than the average distance between cortical gyri. This specificity demonstrates that HD-DOT has sufficient image quality to be useful as a surrogate for fMRI. [Display omitted] ► Image-quality of high-density diffuse optical tomography is evaluated against fMRI. ► Functional maps of the visual cortex are used as a benchmark. ► We co-register subject-specific light models for DOT to MRI space. ► Center-of-mass and phase measures are used as quantitative metrics. ► The average localization error of HD-DOT is less than a typical gyral ridge size.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2012.01.124