Swarmer cell differentiation in Proteus mirabilis

Summary Under the appropriate environmental conditions, the Gram‐negative bacterium Proteus mirabilis undergoes a remarkable differentiation to form a distinct cell type called a swarmer cell. The swarmer cell is characterized by a 20‐ to 40‐fold increase in both cell length and the number of flagel...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 7; no. 8; pp. 1065 - 1073
Main Author Rather, Philip N.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.08.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary Under the appropriate environmental conditions, the Gram‐negative bacterium Proteus mirabilis undergoes a remarkable differentiation to form a distinct cell type called a swarmer cell. The swarmer cell is characterized by a 20‐ to 40‐fold increase in both cell length and the number of flagella per cell. Environmental conditions required for swarmer cell differentiation include: surface contact, inhibition of flagellar rotation, a sufficient cell density and cell‐to‐cell signalling. The differentiated swarmer cell is then able to carry out a highly ordered population migration termed swarming. Genetic analysis of the swarming process has revealed that a large variety of distinct loci are required for this differentiation including: genes involved in regulation, lipopolysaccharide and peptidoglycan synthesis, cell division, ATP production, putrescine biosynthesis, proteolysis and cell shape determination. The process of swarming is important medically because the expression of virulence genes and the ability to invade cells are coupled to the differentiated swarmer cell. In this review, the genetic and environmental requirements for swarmer cell differentiation will be outlined. In addition, the role  of  the  differentiated  swarmer  cell  in  virulence and its possible role in biofilm formation will be discussed.
Bibliography:ark:/67375/WNG-RZWJK2JX-M
ArticleID:EMI806
istex:4CC820781733C30DB04F9ABF57127717FD4FD6AA
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-3
ObjectType-Review-2
ISSN:1462-2912
1462-2920
DOI:10.1111/j.1462-2920.2005.00806.x