基于嵌套张量模型的MIMO中继系统组合接收算法
目前在单向双跳多输入多输出(MIMO)中继系统中,基于嵌套张量模型的接收算法主要采用单步交替最小二乘(ALS)和KRF(Khatri-Rao Factorization)算法。在时变信道且实时性要求较高场景下,计算复杂度高是制约其应用的主要因素。为此,在对单向双跳MIMO中继系统建模基础上,提出了基于嵌套张量模型的双步组合接收算法。该算法通过对接收的数据张量进行重建,将符号估计和信道估计分离,充分利用ALS和KRF的算法优势,有效降低了计算复杂度。同时,对算法的可辨识性进行了分析。仿真结果表明,该算法保持了与传统嵌套PARAFAC的最小二乘(Nested PARAFAC ALS)算法的相同估计...
Saved in:
Published in | 电讯技术 Vol. 57; no. 8; pp. 885 - 891 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
海军航空工程学院 电子信息工程系,山东 烟台,264001
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 目前在单向双跳多输入多输出(MIMO)中继系统中,基于嵌套张量模型的接收算法主要采用单步交替最小二乘(ALS)和KRF(Khatri-Rao Factorization)算法。在时变信道且实时性要求较高场景下,计算复杂度高是制约其应用的主要因素。为此,在对单向双跳MIMO中继系统建模基础上,提出了基于嵌套张量模型的双步组合接收算法。该算法通过对接收的数据张量进行重建,将符号估计和信道估计分离,充分利用ALS和KRF的算法优势,有效降低了计算复杂度。同时,对算法的可辨识性进行了分析。仿真结果表明,该算法保持了与传统嵌套PARAFAC的最小二乘(Nested PARAFAC ALS)算法的相同估计性能,在源天线个数变化时,计算复杂度降低了80%以上;在中继天线个数变化时,计算复杂度降低了50%以上。 |
---|---|
Bibliography: | relay system;semi-blind receiver;nested tensor model The alternating least squares(ALS) algorithm and Khatri-Rao factorization(KRF) algorithm, which are one-step algorithms,are mainly adopted by receiver algorithms based on nested tensor in multi-ple-input multiple-output( MIMO) relay communication systems. The high computational cost is a domi-nant factor restricting their application under time-varying channel and real-time conditions. For this rea-son,an assembled receiver algorithm based on nested tensor model is proposed by building one-way and two-hop MIMO relay communication system. The processes of symbol estimation and channel estimation are separated by reconstructing received signal,and the computation complexity is reduced effectively. Mo-reover,identifiability conditions of the algorithm are analyzed. Simulation results show that the computation complexity of the algorithm is decreased more than 80% and 50% with different source antennas and relay antennas,while the algorithm has the same estimati |
ISSN: | 1001-893X |
DOI: | 10.3969/j.issn.1001-893x.2017.08.006 |