Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale
Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a sc...
Saved in:
Published in | Nature genetics Vol. 52; no. 9; pp. 969 - 983 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.09.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce ‘annotation principal components’, multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of
NPC1L1
and an intergenic region near
APOC1P1
associated with low-density lipoprotein cholesterol.
STAAR is a powerful rare variant association test that incorporates variant functional categories and complementary functional annotations using a dynamic weighting scheme based on annotation principal components. STAAR accounts for population structure and relatedness and is scalable for analyzing large whole-genome sequencing studies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 X. Li, Z.L., H.Z., G.R.A., J.I.R., C.J.W., G.M.P., P.N. and X. Lin designed the experiments. X. Li, Z.L., H.Z., and X. Lin performed the experiments. X. Li, Z.L., H.Z., S.M.G., Y.L., H.C., R.S., R.D., D.K.A., S.A., C.M.B., L.F.B., J.B., E.B., D.W.B., J.G.B., M.P.C., A.C., L.A.C., J.E.C., B.I.F., X.G., G.H., M.R.I., S.L.R.K., S.K., A.T.K., C.L.K., C.C.L., X.S.L., M.C.M., A.W.M., L.W.M., R.A.M., S.T.M., B.D.M., M.E.M., J.E.M., A.C.M., J.R.O., N.D.P., A.P., J.M.P., P.A.P., B.M.P., S.R., K.M.R., S.S.R., J.A.S., H.K.T., M.Y.T., R.S.V., F.F.W., D.E.W., Z.W., J.G.W., L.R.Y., B.M.N., S.R.S., G.R.A., J.I.R., C.J.W., G.M.P., P.N., and X. Lin acquired, analyzed or interpreted data. G.M.P., P.N., and NHLBI TOPMed Lipids Working Group provided administrative, technical or material support. X. Li, Z.L., S.M.G., J.I.R., G.M.P., P.N., and X. Lin drafted the manuscript and revised according to co-author suggestions. All authors critically reviewed the manuscript, suggested revisions as needed, and approved the final version. Author contributions |
ISSN: | 1061-4036 1546-1718 1546-1718 |
DOI: | 10.1038/s41588-020-0676-4 |