Inter-observer variations of the tumor bed delineation for patients after breast conserving surgery in preoperative magnetic resonance and computed tomography scan fusion
Purpose Tumor bed (TB) delineation based on preoperative magnetic resonance imaging (pre-MRI) fused with postoperative computed tomography (post-CT) were compared to post-CT only to define pre-MRI may aid in improving the accuracy of delineation. Methods and materials The pre-MRI imaging of 10 patie...
Saved in:
Published in | BMC cancer Vol. 21; no. 1; pp. 1 - 838 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
20.07.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose Tumor bed (TB) delineation based on preoperative magnetic resonance imaging (pre-MRI) fused with postoperative computed tomography (post-CT) were compared to post-CT only to define pre-MRI may aid in improving the accuracy of delineation. Methods and materials The pre-MRI imaging of 10 patients underwent radiotherapy (RT) after breast conserving surgery (BCS) were reviewed. Post-CT scans were acquired in the same prone position as pre-MRI. Pre-MRI and post-CT automatically match and then manual alignment was given to enhance fusion consistency. Three radiation oncologists and 2 radiologists delineated the clinical target volume (CTV) for CT-based. The gross target volume (GTV) of pre-MRI-based was determined by the volume of tumor acquired with 6 sequences: T1, T2, T2W-SPAIR, DWI, dyn-eTHRIVE and sdyn-eTHRIVE, expended 10 mm to form the CTV-pre-MRI. Planning target volume (PTV) for each sequence was determined by CTV extended 15 mm, trimmed to 3 mm from skin and the breast-chest wall interface. The variability of the TB delineation were developed as follows: the mean volume, conformity index (CI) and dice coefficient (DC). Results The mean volumes of CTV and PTV delineated with CT were all larger than those with pre-MRI. The lower inter-observer variability was observed from PTV, especially in sdyn-eTHRIVE in all sequences. For each sequence of pre-MRI, all DCs were larger than post-CT, and the largest DC was observed by sdyn-eTHRIVE sequence fusion to post-CT. The overlap for PTV was significantly improved in the pre-MRI-based compared with the CT-based. Conclusions TB volumes based on pre-MRI were smaller than post-CT with CVS increased. Pre-MRI provided a more precise definition of the TB with observers performed a smaller inter-observer variability than CT. Pre-MRI, especially in sdyn-eTHRIVE sequence, should help in reducing treatment volumes with the improved accuracy of TB delineation of adjuvant RT of breast cancer. Keywords: Breast cancer, Radiotherapy, Tumor bed, Magnetic resonance imaging, Computed tomography |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2407 1471-2407 |
DOI: | 10.1186/s12885-021-08546-5 |