Understanding the equine cecum-colon ecosystem: current knowledge and future perspectives

Having evolved as a grazing animal, a horse’s digestive physiology is characterized by rapid gastric transit, a rapid but intense enzymatic digestion along the small intestine, and a long and intense microbial fermentation in the large intestine. The process of understanding and describing feed degr...

Full description

Saved in:
Bibliographic Details
Published inAnimal (Cambridge, England) Vol. 5; no. 1; pp. 48 - 56
Main Authors Santos, A. S., Rodrigues, M. A. M., Bessa, R. J. B., Ferreira, L. M., Martin-Rosset, W.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.01.2011
Elsevier Limited
Published by Elsevier (since 2021) / Cambridge University Press (until 2020)
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Having evolved as a grazing animal, a horse’s digestive physiology is characterized by rapid gastric transit, a rapid but intense enzymatic digestion along the small intestine, and a long and intense microbial fermentation in the large intestine. The process of understanding and describing feed degradation mechanisms in the equine digestive system in general, and in the hindgut ecosystem in particular, is essential. Regardless of its importance for the nutritional status of the host, the significance of the cecum-colon ecosystem has not yet been fully understood, and few reports have focused deeply on the contribution of the hindgut microbial population to the nitrogen and energy requirements of the horse. Compared to ruminal activity, very little is known about hindgut ecosystem activity in the horse. Information concerning the metabolism of this microbial population and its requirements is lacking. The use of internal bacterial markers for quantifying microbial outflow in ruminants is widely reported. These techniques can be applied to cecum-colon microbial quantification, contributing to a better characterization of this ecosystem. It is likely wrong to believe that the optimization strategy in the hindgut is similar to what happens in the rumen – that is, to maximize microbial growth and, therefore, fermentation. If we consider the type of substrate that, in normal conditions, arrives in the hindgut, we can expect it to be nitrogen limiting, providing limited nitrogen-based substrates for microbial fermentation. In this review paper, we intend to gather existing information on the equine ecosystem and to provide future perspectives of research.
Bibliography:http://dx.doi.org/10.1017/S1751731110001588
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-7311
1751-732X
DOI:10.1017/S1751731110001588