Development of an Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on the Se-MCM-41 Mesoporous Composite

A new bioenzymatic glucose biosensor for selective and sensitive detection of glucose was developed by the immobilization of glucose oxidase (GOD) onto selenium nanoparticle-mesoporous silica composite (MCM-41) matrix and then prepared as a carbon paste electrode (CPE). Cyclic voltammetry was employ...

Full description

Saved in:
Bibliographic Details
Published inJournal of analytical methods in chemistry Vol. 2018; no. 2018; pp. 1 - 8
Main Authors Wan Nik, W. B., Latif, Ahmad Zubaidi A., Arrif, Tengku M., Mohamad, Nasir, Rahman, Mokhlesur M., Yusan, Sabriye, M. A., Mohd Aznan
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new bioenzymatic glucose biosensor for selective and sensitive detection of glucose was developed by the immobilization of glucose oxidase (GOD) onto selenium nanoparticle-mesoporous silica composite (MCM-41) matrix and then prepared as a carbon paste electrode (CPE). Cyclic voltammetry was employed to probe the catalytic behavior of the biosensor. A linear calibration plot is obtained over a wide concentration range of glucose from 1 × 10−5 to 2 × 10−3 M. Under optimal conditions, the biosensor exhibits high sensitivity (0.34 µA·mM−1), low detection limit (1 × 10−4 M), high affinity to glucose (Km = 0.02 mM), and also good reproducibility (R.S.D. 2.8%, n=10) and a stability of about ten days when stored dry at +4°C. Besides, the effects of pH value, scan rate, mediator effects on the glucose current, and electroactive interference of the biosensor were also discussed. As a result, the biosensor exhibited an excellent electrocatalytic response to glucose as well as unique stability and reproducibility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Larisa Lvova
ISSN:2090-8865
2090-8873
DOI:10.1155/2018/2687341