Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemic...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 324; no. 5932; pp. 1312 - 1314
Main Authors Li, Xuesong, Cai, Weiwei, An, Jinho, Kim, Seyoung, Nah, Junghyo, Yang, Dongxing, Piner, Richard, Velamakanni, Aruna, Jung, Inhwa, Tutuc, Emanuel, Banerjee, Sanjay K, Colombo, Luigi, Ruoff, Rodney S
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 05.06.2009
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single-layer graphene, with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on silicon/silicon dioxide substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1171245