Selective Recognition of Myoglobin in Biological Samples Using Molecularly Imprinted Polymer-Based Affinity Traps
The current work demonstrates the design, characterization, and preparation of molecularly imprinted microspheres for the selective detection of myoglobin in serum samples. The suspension polymerization approach was applied for the preparation of myoglobin imprinted microspheres. For this purpose, N...
Saved in:
Published in | International journal of analytical chemistry Vol. 2018; no. 2018; pp. 1 - 9 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The current work demonstrates the design, characterization, and preparation of molecularly imprinted microspheres for the selective detection of myoglobin in serum samples. The suspension polymerization approach was applied for the preparation of myoglobin imprinted microspheres. For this purpose, N-methacryloylamino folic acid-Nd3+ (MAFol- Nd3+) was chosen as the complex functional monomer. The optimization studies were performed changing the medium pH, temperature, and myoglobin concentration. pH 7.0 was determined as the optimum value where the prepared imprinted microspheres displayed maximum binding for myoglobin. The maximum binding capacity was achieved as 623 mgg−1. In addition, the selectivity studies were conducted. The results confirmed that the imprinted microspheres showed great selectivity towards myoglobin in the existence of hemoglobin, cytochrome c, and lysozyme which were chosen as potentially competing proteins. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Academic Editor: Jan Åke Jönsson |
ISSN: | 1687-8760 1687-8779 |
DOI: | 10.1155/2018/4359892 |