广义Boussinesq方程的精确行波解研究

利用辅助函数法,把广义Boussinesq方程转化为代数方程组进行求解,并运用Maple软件计算得出非线性广义Boussinesq方程的10组精确行波解,解的形式丰富多样;利用该解题思路还可以求解推广的Kd V方程和耦合的薛定谔方程的精确行波解.

Saved in:
Bibliographic Details
Published in郑州轻工业学院学报(自然科学版) Vol. 30; no. 3; pp. 152 - 156
Main Author 景书杰 赵建卫 王世磊
Format Journal Article
LanguageChinese
Published 河南理工大学 数学与信息科学学院,河南 焦作,454000 2015
Subjects
Online AccessGet full text
ISSN2095-476X
DOI10.3969/j.issn.2095-476X.2015.3/4.032

Cover

More Information
Summary:利用辅助函数法,把广义Boussinesq方程转化为代数方程组进行求解,并运用Maple软件计算得出非线性广义Boussinesq方程的10组精确行波解,解的形式丰富多样;利用该解题思路还可以求解推广的Kd V方程和耦合的薛定谔方程的精确行波解.
Bibliography:auxiliary functions method; generalized Boussinesq equation; exact travelling wave solution
JING Shu-jie, ZHAO Jian-wei, WANG Shi-lei ( Mathematics and Information Science Academy, He'nan Polytechnic University, Jiaozuo 454000, China)
41-1422/TS
The auxiliary functions method was used to solve the generalized Boussinesq equations by transforming them into solving the algebraic equations. By the further application of the Maple software,ten exact travelling wave solutions of nonlinear generalized Boussinesq equation were gotten,which were abundant.Besides,the exact travelling wave solutions of the generalized Kd V equations and the nonlinear coupled Schrodinger system will be gotten in this way.
ISSN:2095-476X
DOI:10.3969/j.issn.2095-476X.2015.3/4.032