Extension of the neuroprotective time window for thiazolidinediones in ischemic stroke is dependent on time of reperfusion

Abstract Stroke is a leading cause of death and disability but has limited therapeutic options. Thiazolidinediones (TZDs), agonists for the nuclear receptor, peroxisome proliferator-activated receptor (PPAR)γ, reduce infarct volume and improve neurologic function following transient middle cerebral...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 170; no. 3; pp. 846 - 857
Main Authors Gamboa, J, Blankenship, D.A, Niemi, J.P, Landreth, G.E, Karl, M, Hilow, E, Sundararajan, S
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 27.10.2010
Elsevier
Subjects
US
PBS
IR
ROS
SEM
PCR
HPF
FDA
TTC
MRI
CBF
RXR
CT
TZD
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Stroke is a leading cause of death and disability but has limited therapeutic options. Thiazolidinediones (TZDs), agonists for the nuclear receptor, peroxisome proliferator-activated receptor (PPAR)γ, reduce infarct volume and improve neurologic function following transient middle cerebral artery occlusion (MCAO) in rats. Translation of these findings into clinical therapy will require careful assessment of dosing paradigms and effective time windows for treatment. Understanding the mechanisms by which TZDs protect the brain provides insight into how time windows for neuroprotection might be extended. We find that two TZDs, pioglitazone and rosiglitazone, significantly reduce infarct volume at doses similar to those used clinically (1 mg/kg for pioglitazone and 0.1 mg/kg for rosiglitazone). We also find that pioglitazone reduces infarction volume in a transient, but not a permanent MCAO model suggesting that reperfusion plays an important role in TZD mediated neuroprotection. Since PPARγ agonists reduce inflammation and oxidative stress, both of which are exacerbated by reperfusion, we hypothesized that TZDs would be most effective if administered prior to reperfusion. We administered TZDs 3 h after MCAO and found that infarction volume and neurologic function are significantly improved in animals reperfused at 3 h and 15 min (after TZD treatment), but not in animals reperfused at 2 h (before TZD treatment) when assessed either 24 h or 3 weeks after MCAO. While TZDs reduce intercellular adhesion molecule (ICAM) expression to a similar extent regardless of the time of reperfusion, leukocyte entry into brain parenchyma is more dramatically reduced when reperfusion is delayed until after drug treatment. The finding that delaying reperfusion until after TZD treatment is beneficial despite a longer period of ischemia, is dramatic given the widely held view that duration of ischemia is the most important determinate of injury.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2010.07.063