Hyaluronic acid-based nano-sized drug carrier-containing Gellan gum microspheres as potential multifunctional embolic agent

The purpose of this study was to develop a gellan gum-based multifunctional embolic agent. Calibrated spherical gellan gum and nanoparticle-containing gellan gum microspheres were prepared via water-in oil emulsification method. Self-assembled nanoparticles composed of short-chain hyaluronic acid an...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 731 - 10
Main Authors Hsu, Ming Fang, Tyan, Yen Sheng, Chien, Yu Chen, Lee, Ming Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.01.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The purpose of this study was to develop a gellan gum-based multifunctional embolic agent. Calibrated spherical gellan gum and nanoparticle-containing gellan gum microspheres were prepared via water-in oil emulsification method. Self-assembled nanoparticles composed of short-chain hyaluronic acid and polyethylenimine as the doxorubicin carrier were prepared. The short-chain hyaluronic acid/polyethylenimine/ doxorubicin (sHH/PH/Dox) with the mean size was 140 ± 8 nm. To examine sHH/PH/Dox nanoparticle uptake into cells, the results confirmed that sHH/PH nanoparticles as drug carrier can facilitate the transport of doxorubicin into HepG2 liver cancer cells. Subsequently, sHH/PH/Dox merged into the gellan gum (GG) microspheres forming GG/sHH/PH/Dox microsphere. After a drug release experiment lasting 45 days, the amount of released doxorubicin from 285, 388, and 481 μm GG/sHH/PH/Dox microspheres were approximately 4.8, 1.8 and 1.1-fold above the IC50 value of the HepG2 cell. GG/sHH/PH/Dox microspheres were performed in rabbit ear embolization model and ischemic necrosis on ear was visible due to the vascular after 8 days. Regarding the application of this device in the future, we aim to provide better embolization agents for transcatheter arterial chemoembolization (TACE).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-19191-7