Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma

Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing tog...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 4; no. 5; p. e1000079
Main Authors Hübner, Katrin, Schwager, Thomas, Winkler, Karl, Reich, Jens-Georg, Holzhütter, Hermann-Georg
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2008
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1000079

Cover

Abstract Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia.
AbstractList   Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia.
Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia.
Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond “bad” and “good” cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia. Lipids such as cholesterol and triglycerides, which are synthesized in the body or taken up by food, are indispensable for each cell of the human body. They are transported in blood plasma among the various tissues by so-called lipoproteins, which differ in size as well as in their composition of lipids and proteins. Changes in the amount of certain lipoprotein fractions are considered a major risk factor for atherosclerosis and cardiovascular diseases (CVD)—the main cause of death in the western states. To identify patients at risk for CVD, major lipoprotein classes (“bad” LDL, “good” HDL) are routinely monitored in clinical practice (which equals the lipoprotein profile). In this paper, we present a mathematical model that allows us to calculate lipoprotein profiles by computer and to simulate how the numerous biochemical processes involved in the metabolism of plasma lipoproteins influence the lipoprotein profile. Our simulations successfully reproduce clinically measured lipoprotein profiles of healthy subjects and patients with a defined lipid disorder (dyslipidemia). Calculation of a lipoprotein profile that fits best to the profile measured in individual patients opens the possibility of diagnosing potential molecular causes for dyslipidemia. The results of our model calculations also suggest the existence of lipoprotein sub-fractions which hitherto remained unrecognized in routinely performed separation of lipoprotein fractions. If this finding could be validated in forthcoming experimental investigations, it might help to define better patient-specific risk predictors of CVD.
Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia.Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia.
Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia. doi:10.1371/journal.pcbi.1000079
Audience Academic
Author Holzhütter, Hermann-Georg
Hübner, Katrin
Winkler, Karl
Reich, Jens-Georg
Schwager, Thomas
AuthorAffiliation 1 Computational Systems Biochemistry, Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Germany
University of California San Diego, United States of America
3 Department of Clinical Chemistry, University Hospital Freiburg, Germany
2 Bioinformatics Group, Max Delbrück Center for Molecular Medicine Berlin-Buch, Germany
AuthorAffiliation_xml – name: 2 Bioinformatics Group, Max Delbrück Center for Molecular Medicine Berlin-Buch, Germany
– name: 1 Computational Systems Biochemistry, Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Germany
– name: University of California San Diego, United States of America
– name: 3 Department of Clinical Chemistry, University Hospital Freiburg, Germany
Author_xml – sequence: 1
  givenname: Katrin
  surname: Hübner
  fullname: Hübner, Katrin
– sequence: 2
  givenname: Thomas
  surname: Schwager
  fullname: Schwager, Thomas
– sequence: 3
  givenname: Karl
  surname: Winkler
  fullname: Winkler, Karl
– sequence: 4
  givenname: Jens-Georg
  surname: Reich
  fullname: Reich, Jens-Georg
– sequence: 5
  givenname: Hermann-Georg
  surname: Holzhütter
  fullname: Holzhütter, Hermann-Georg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18497853$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wDxBkhcRiBj8Se9xFpTI8OtIIKh5iaTmOEzxy7GA7Veff45C06rBAIlnEuv7OudfOOc2OrLMqy55DsISYwjc7N3grzLKXlV5CkB7KHmUnsCzxguJydfRgfZydhrADIC0ZeZIdw1XB6KrEJ9mPtev6IYqoXTLLt7rXtTOu3Z_n117VWkZt27Hseu-i0jZ_p2zQcZ-2XaONCnmqXQ2dsPlb41ydXxsROvE0e9wIE9Sz-XuWff_w_tv6arH9_HGzvtwuJAE4LkgjoKqlqtLwBW4YwQg1mGGFEANEgAqzAhJBGGKEkZoSJCqMJJMANFQpic-yl5Nvb1zg850EDjFERUHKFUzEZiJqJ3a897oTfs-d0PxPwfmWCx-1NIpLylIzAJVYyQLKkokaFmpshBElsExeF3O3oerGuW30whyYHu5Y_ZO37oYjTCCCLBm8mg28-zWoEHmng1TGCKvcEDgFlGKKR3A5ga1Ig2nbuOQn01urTsuUhPHu-SUCGGHIAE2C1weCxER1G1sxhMA3X7_8B_vpkH3x8Mj3Z72LUALOJ0B6F4JXDZd6ylOaWBsOAR_zevdv-JhXPuc1iYu_xPf-_5L9BqSl8NE
CitedBy_id crossref_primary_10_1371_journal_pcbi_1003509
crossref_primary_10_2217_clp_13_52
crossref_primary_10_2217_clp_10_85
crossref_primary_10_1016_j_arr_2016_03_008
crossref_primary_10_1016_j_bbalip_2017_02_011
crossref_primary_10_1002_psp4_27
crossref_primary_10_1016_j_biosystems_2016_05_001
crossref_primary_10_1371_journal_pcbi_1000554
crossref_primary_10_1371_journal_pcbi_1003579
crossref_primary_10_1186_s12918_019_0679_x
crossref_primary_10_1194_jlr_M800354_JLR200
crossref_primary_10_1194_jlr_M031930
crossref_primary_10_1016_j_biosystems_2024_105390
crossref_primary_10_15829_1728_8800_2011_6_105_111
crossref_primary_10_1016_j_nano_2020_102318
crossref_primary_10_1089_nsm_2020_0002
crossref_primary_10_1371_journal_pone_0311975
crossref_primary_10_1155_2017_7967380
crossref_primary_10_1194_jlr_M058446
crossref_primary_10_1002_wsbm_1546
crossref_primary_10_1194_jlr_M057943
crossref_primary_10_1371_journal_pone_0272050
crossref_primary_10_1016_j_csbj_2014_11_006
Cites_doi 10.1016/S0021-9150(01)00447-6
10.1172/JCI103182
10.1210/jc.2005-1895
10.1016/S0022-2275(20)33394-0
10.1161/01.ATV.17.7.1392
10.1007/s001090000156
10.1111/j.1365-2362.2004.01322.x
10.1074/jbc.272.34.20982
10.1126/science.220.4598.671
10.1073/pnas.84.7.1854
10.1093/qjmed/hci136
10.1161/01.ATV.18.3.466
10.1016/S0022-2275(20)41639-6
10.1172/JCI109975
10.1172/JCI28632
10.1016/S0140-6736(96)07495-8
10.1172/JCI116915
10.1194/jlr.R600017-JLR200
10.1016/S0021-9150(99)00351-2
10.1093/clinchem/38.9.1632
10.1016/S0022-2275(20)37934-7
10.1194/jlr.M500187-JLR200
10.1074/jbc.273.42.27191
10.1016/S0022-2275(20)38178-5
10.1159/000012712
10.1016/0021-9991(76)90041-3
10.1161/01.ATV.9.3.326
10.1016/S0021-9150(00)00643-2
10.2741/A614
10.1053/meta.2002.29006
10.1038/11905
10.1016/S0021-9258(19)44049-0
10.1194/jlr.M300209-JLR200
10.1161/01.ATV.17.7.1369
10.1016/S0021-9150(99)00051-9
10.1016/j.ecl.2004.03.016
10.1172/JCI112009
10.1194/jlr.D300007-JLR200
10.1016/S0022-2275(20)32065-4
10.1016/S0022-2275(20)38014-7
10.1097/00041433-200204000-00004
10.1016/S0022-2275(20)32379-8
10.1016/0076-6879(86)28084-2
10.1172/JCI118196
10.1016/S0002-9149(02)03383-0
10.1016/0021-9150(90)90131-2
10.1016/0167-4838(90)90100-T
10.1021/bi00685a003
10.1194/jlr.M300521-JLR200
10.1194/jlr.R600013-JLR200
10.1073/pnas.0403506101
10.1161/01.ATV.0000183727.90611.4f
10.1172/JCI110789
10.1161/01.ATV.20.7.1796
10.1042/bst0311066
10.1016/S0022-2275(20)35376-1
10.1194/jlr.R600008-JLR200
ContentType Journal Article
Copyright COPYRIGHT 2008 Public Library of Science
Hübner et al. 2008
2008 Hübner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hübner K, Schwager T, Winkler K, Reich J-G, Holzhütter H-G (2008) Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma. PLoS Comput Biol 4(5): e1000079. doi:10.1371/journal.pcbi.1000079
Copyright_xml – notice: COPYRIGHT 2008 Public Library of Science
– notice: Hübner et al. 2008
– notice: 2008 Hübner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hübner K, Schwager T, Winkler K, Reich J-G, Holzhütter H-G (2008) Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma. PLoS Comput Biol 4(5): e1000079. doi:10.1371/journal.pcbi.1000079
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1000079
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Predicting Plasma Lipoprotein Profiles
EISSN 1553-7358
ExternalDocumentID 1312446581
oai_doaj_org_article_c7916a01ea8c41c59ad14ef7ee327615
PMC2361219
A203231907
18497853
10_1371_journal_pcbi_1000079
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
CGR
CUY
CVF
ECM
EIF
M0N
M~E
NPM
PGMZT
PMFND
7X8
PJZUB
PPXIY
PQGLB
PUEGO
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c603t-6fa1edceb07943f96322f393e22906a0b39416a6929696d762ab32c9c00f7eec3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:31 EDT 2023
Wed Aug 27 01:26:39 EDT 2025
Thu Aug 21 14:31:17 EDT 2025
Thu Sep 04 18:09:02 EDT 2025
Tue Jun 10 21:03:27 EDT 2025
Fri Jun 27 05:55:06 EDT 2025
Fri Jun 27 05:28:24 EDT 2025
Wed Feb 19 02:30:56 EST 2025
Thu Apr 24 23:02:23 EDT 2025
Tue Jul 01 04:23:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Lipoproteins
Blood Chemical Analysis
Models, Cardiovascular
Computer Simulation
Humans
Statistical Distributions
Models, Statistical
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-6fa1edceb07943f96322f393e22906a0b39416a6929696d762ab32c9c00f7eec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: BIOQUANT, Modeling Biological Processes, Institute of Zoology, University of Heidelberg, Heidelberg, Germany.
Performed the experiments: KW. Analyzed the data: KH. Contributed reagents/materials/analysis tools: TS KW. Wrote the paper: KH TS HH. Data-mined the literature; contributed to the model design; performed model building, implementations, and simulations; conceived and performed in-silico experiments and analyses: KH. Provided stochastic modeling experience and model implementations and contributed to the model design, simulations and analyses: TS. Provided experimental work and clinical experience in lipid diagnostics: KW. Provided mathematical modeling experience and lipoprotein metabolism knowledge: JR. Contributed to the model design and provided mathematical modeling experience, model implementation, and simulation: HH.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1000079
PMID 18497853
PQID 70773739
PQPubID 23479
ParticipantIDs plos_journals_1312446581
doaj_primary_oai_doaj_org_article_c7916a01ea8c41c59ad14ef7ee327615
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2361219
proquest_miscellaneous_70773739
gale_infotracacademiconefile_A203231907
gale_incontextgauss_ISR_A203231907
gale_incontextgauss_ISN_A203231907
pubmed_primary_18497853
crossref_citationtrail_10_1371_journal_pcbi_1000079
crossref_primary_10_1371_journal_pcbi_1000079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-05-01
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2008
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References BF Asztalos (ref28) 2005; 25
G Kostner (ref59) 1996
K Winkler (ref13) 1999; 144
UM Koivisto (ref19) 1997; 17
C Murray (ref1) 1997; 349
RM Krauss (ref39) 2004; 33
RW Mahley (ref46) 2006; 116
WF Beltz (ref12) 1985; 76
MW Baumstark (ref32) 1990; 1037
AL Miller (ref26) 1973; 248
R Batal (ref16) 2000; 41
CJ Packard (ref14) 2000; 41
BF Asztalos (ref29) 2005; 46
M Chétiveaux (ref10) 2004; 34
K Winkler (ref38) 2004; 28
BA Griffin (ref30) 1990; 83
K Ikewaki (ref58) 1995; 96
W März (ref20) 1993; 92
A Brooks-Wilson (ref23) 1999; 22
RM Krauss (ref27) 1982; 23
AK Soutar (ref44) 1975; 14
DJ Rader (ref40) 1991; 32
T Hirano (ref37) 2003; 44
R Ohashi (ref43) 2005; 98
K Winkler (ref8) 2000; 150
J Huuskonen (ref47) 2001; 155
Y Ji (ref49) 1997; 272
CB Blum (ref18) 1980; 66
JR Schaefer (ref9) 2000; 20
RJ Havel (ref2) 1955; 34
JD Otvos (ref34) 1992; 38
KC Yu (ref42) 2001; 6
J Dallongeville (ref41) 1998; 42
N Wang (ref50) 2004; 101
CJ Packard (ref21) 2003; 31
A van Tol (ref48) 2002; 13
AS Jarnagin (ref56) 1987; 84
KG Parhofer (ref4) 2006; 47
AV Nichols (ref33) 1986; 128
JD Otvos (ref35) 2002; 48
K Ouguerram (ref54) 2002; 51
DT Gillespie (ref51) 1976; 22
JC Gibson (ref17) 1983; 24
PJ Fielding (ref55) 1983; 71
PHR Barrett (ref3) 2006; 47
BF Asztalos (ref24) 2001; 156
NJ Hime (ref57) 1998; 273
H Knoblauch (ref6) 2000; 78
S Kirkpatrick (ref52) 1983; 220
C Maugeais (ref15) 1997; 17
R Frénais (ref7) 1999; 40
M Chapman (ref31) 1981; 22
S Rashid (ref5) 2006; 47
CM Barbagallo (ref45) 1998; 18
SP Babirak (ref22) 1989; 9
T Teerlink (ref60) 2004; 45
JS Cohn (ref53) 2003; 44
BF Asztalos (ref25) 2003; 91
R Carroll (ref36) 1983; 24
J Ji (ref11) 2006; 91
References_xml – volume: 48
  start-page: 171
  year: 2002
  ident: ref35
  article-title: Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy.
  publication-title: Clin Lab
– volume: 155
  start-page: 269
  year: 2001
  ident: ref47
  article-title: The impact of phospholipid transfer protein (PLTP) on HDL metabolism.
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(01)00447-6
– volume: 34
  start-page: 1345
  year: 1955
  ident: ref2
  article-title: The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
  publication-title: J Clin Invest
  doi: 10.1172/JCI103182
– volume: 91
  start-page: 973
  year: 2006
  ident: ref11
  article-title: High-density lipoprotein (HDL) transport in the metabolic syndrome: application of a new model for HDL particle kinetics.
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2005-1895
– volume: 40
  start-page: 1506
  year: 1999
  ident: ref7
  article-title: Apolipoprotein A-I kinetics in heterozygous familial hypercholesterolemia: a stable isotope study.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)33394-0
– volume: 17
  start-page: 1392
  year: 1997
  ident: ref19
  article-title: Familial moderate hypercholesterolemia caused by asp235→glu mutation of the LDL receptor gene and co-occurrence of a de novo deletion of the LDL receptor gene in the same family.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.17.7.1392
– volume: 78
  start-page: 507
  year: 2000
  ident: ref6
  article-title: A pathway model of lipid metabolism to predict the effect of genetic variability on lipid levels.
  publication-title: J Mol Med
  doi: 10.1007/s001090000156
– volume: 34
  start-page: 262
  year: 2004
  ident: ref10
  article-title: New model for kinetic studies of HDL metabolism in humans.
  publication-title: Eur J Clin Invest
  doi: 10.1111/j.1365-2362.2004.01322.x
– volume: 272
  start-page: 20982
  year: 1997
  ident: ref49
  article-title: Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.34.20982
– volume: 220
  start-page: 671
  year: 1983
  ident: ref52
  article-title: Optimization by simulated annealing.
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 84
  start-page: 1854
  year: 1987
  ident: ref56
  article-title: Isolation and specificity of a Mr 74,000 cholesteryl ester transfer protein from human plasma.
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.84.7.1854
– volume: 98
  start-page: 845
  year: 2005
  ident: ref43
  article-title: Reverse cholesterol transport and cholesterol efflux in atherosclerosis.
  publication-title: QJM
  doi: 10.1093/qjmed/hci136
– volume: 18
  start-page: 466
  year: 1998
  ident: ref45
  article-title: Influence of apoE content on receptor binding of large, buoyant LDL in subjects with different LDL subclass phenotypes.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.18.3.466
– volume: 32
  start-page: 1849
  year: 1991
  ident: ref40
  article-title: In vivo metabolism of apolipoprotein A-I on high density lipoprotein particles LpA-I and LpA-I,A-II.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)41639-6
– volume: 66
  start-page: 1240
  year: 1980
  ident: ref18
  article-title: Radioimmunoassay studies of human apolipoprotein E.
  publication-title: J Clin Invest
  doi: 10.1172/JCI109975
– volume: 116
  start-page: 1226
  year: 2006
  ident: ref46
  article-title: Putting cholesterol in its place: apoE and reverse cholesterol transport.
  publication-title: J Clin Invest
  doi: 10.1172/JCI28632
– volume: 349
  start-page: 1436
  year: 1997
  ident: ref1
  article-title: Global mortality, disability, and the contribution of risk factors: Global burden of disease study.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(96)07495-8
– volume: 92
  start-page: 2922
  year: 1993
  ident: ref20
  article-title: Accumulation of “small dense” low density lipoproteins (LDL) in a homozygous patients with familial defective apolipoprotein B-100 results from heterogeneous interaction of LDL subfractions with the LDL receptor.
  publication-title: J Clin Invest
  doi: 10.1172/JCI116915
– volume: 47
  start-page: 1607
  year: 2006
  ident: ref3
  article-title: Thematic review series: Patient-Oriented Research. Design and analysis of lipoprotein tracer kinetics studies in humans.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R600017-JLR200
– volume: 150
  start-page: 113
  year: 2000
  ident: ref8
  article-title: HDL steady state levels are not affected, but HDL apoA-I turnover is enhanced by Lifibrol in patients with hypercholesterolemia and mixed hyperlipidemia.
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(99)00351-2
– volume: 38
  start-page: 1632
  year: 1992
  ident: ref34
  article-title: Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement.
  publication-title: Clin Chem
  doi: 10.1093/clinchem/38.9.1632
– volume: 24
  start-page: 886
  year: 1983
  ident: ref17
  article-title: Apolipoprotein E enriched lipoprotein subclasses in normolipidemic subjects.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)37934-7
– volume: 46
  start-page: 2246
  year: 2005
  ident: ref29
  article-title: Differential effects of HDL subpopulations on cellular ABCA1- and SRBI-mediated cholesterol efflux.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M500187-JLR200
– volume: 273
  start-page: 27191
  year: 1998
  ident: ref57
  article-title: The influence of apolipoproteins on the hepatic lipase-mediated hydrolysis of high density lipoprotein phospholipid and triacylglycerol.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.42.27191
– volume: 23
  start-page: 97
  year: 1982
  ident: ref27
  article-title: Identification of multiple subclasses of plasma low density lipoproteins in normal humans.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)38178-5
– volume: 42
  start-page: 1
  year: 1998
  ident: ref41
  article-title: Postprandial dyslipidemia: a risk factor for coronary heart disease.
  publication-title: Ann Nutr Metab
  doi: 10.1159/000012712
– volume: 22
  start-page: 403
  year: 1976
  ident: ref51
  article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions.
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(76)90041-3
– year: 1996
  ident: ref59
  article-title: Handbuch der Stoffwechselstörungen, Stuttgart: Schattauer Verlag, volume 1. korr. Nachdruck, chapter Zusammensetzung und Stoffwechsel der Lipoproteine (German). pp. 3–47
– volume: 9
  start-page: 326
  year: 1989
  ident: ref22
  article-title: Detection and characterization of the heterozygote state for lipoprotein lipase deficiency.
  publication-title: Arteriosclerosis
  doi: 10.1161/01.ATV.9.3.326
– volume: 156
  start-page: 217
  year: 2001
  ident: ref24
  article-title: Subpopulations of high density lipoproteins in homozygous and heterozygous Tangier disease.
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(00)00643-2
– volume: 6
  start-page: D332
  year: 2001
  ident: ref42
  article-title: Postprandial lipoproteins and atherosclerosis.
  publication-title: Front Biosci
  doi: 10.2741/A614
– volume: 51
  start-page: 5
  year: 2002
  ident: ref54
  article-title: A new labeling approach using stable isotopes to study in vivo plasma cholesterol metabolism in humans.
  publication-title: Metabolism
  doi: 10.1053/meta.2002.29006
– volume: 22
  start-page: 336
  year: 1999
  ident: ref23
  article-title: Mutations in abc1 in tangier disease and familial high-density lipoprotein deficiency.
  publication-title: Nature Genetics
  doi: 10.1038/11905
– volume: 248
  start-page: 3359
  year: 1973
  ident: ref26
  article-title: Activation of lipoprotein lipase by apolipoprotein glutamic acid. Formation of a stable surface film.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)44049-0
– volume: 44
  start-page: 1976
  year: 2003
  ident: ref53
  article-title: Plasma turnover of HDL apoC-I, apoC-III, and apoE in humans: in vivo evidence for a link between HDL apoC-III and apoA-I metabolism.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M300209-JLR200
– volume: 17
  start-page: 1369
  year: 1997
  ident: ref15
  article-title: Lipoprotein kinetics in patients with analbuminemia : Evidence for the role of serum albumin in controlling lipoprotein metabolism.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.17.7.1369
– volume: 144
  start-page: 167
  year: 1999
  ident: ref13
  article-title: Lifibrol enhances the low density lipoprotein apolipoprotein B-100 turnover in patients with hypercholesterolemia and mixed hyperlipidemia.
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(99)00051-9
– volume: 33
  start-page: 405
  year: 2004
  ident: ref39
  article-title: Metabolic abnormalities: triglyceride and low density lipoprotein.
  publication-title: Endocrinol Metab Clin North Am
  doi: 10.1016/j.ecl.2004.03.016
– volume: 76
  start-page: 575
  year: 1985
  ident: ref12
  article-title: Development of an integrated model for analysis of the kinetics of apolipoprotein B in plasma very low density lipoproteins, intermediate density lipoproteins, and low density lipoproteins.
  publication-title: J Clin Invest
  doi: 10.1172/JCI112009
– volume: 44
  start-page: 2193
  year: 2003
  ident: ref37
  article-title: A novel and simple method for quantification of small, dense LDL.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.D300007-JLR200
– volume: 41
  start-page: 305
  year: 2000
  ident: ref14
  article-title: Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)32065-4
– volume: 24
  start-page: 200
  year: 1983
  ident: ref36
  article-title: Lipoprotein separation and low density lipoprotein molecular weight determination using high performance gel-filtration chromatography.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)38014-7
– volume: 13
  start-page: 135
  year: 2002
  ident: ref48
  article-title: Phospholipid transfer protein.
  publication-title: Curr Opin Lipidol
  doi: 10.1097/00041433-200204000-00004
– volume: 41
  start-page: 706
  year: 2000
  ident: ref16
  article-title: Plasma kinetics of apoC-III and apoE in normolipidemic and hypertriglyceridemic subjects.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)32379-8
– volume: 128
  start-page: 417
  year: 1986
  ident: ref33
  article-title: Nondenaturing polyacrylamide gradient gel electrophoresis.
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(86)28084-2
– volume: 96
  start-page: 1573
  year: 1995
  ident: ref58
  article-title: Increased catabolic rate of low density lipoproteins in humans with cholesteryl ester transfer protein deficiency.
  publication-title: J Clin Invest
  doi: 10.1172/JCI118196
– volume: 91
  start-page: 12E
  year: 2003
  ident: ref25
  article-title: High-density lipoprotein subpopulations in pathologic conditions.
  publication-title: Am J Cardiol
  doi: 10.1016/S0002-9149(02)03383-0
– volume: 83
  start-page: 59
  year: 1990
  ident: ref30
  article-title: Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation.
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(90)90131-2
– volume: 1037
  start-page: 48
  year: 1990
  ident: ref32
  article-title: Structure of human low-density lipoprotein subfractions, determined by X-ray small-angle scattering.
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0167-4838(90)90100-T
– volume: 28
  start-page: 447
  year: 2004
  ident: ref38
  article-title: Low density Lipoprotein-heterogenität als prognostischer Marker kardiovaskulärer Erkrankungen/low density lipoprotein heterogeneity for risk evaluation of cardiovascular disease.
  publication-title: J Lab Med
– volume: 14
  start-page: 3057
  year: 1975
  ident: ref44
  article-title: Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase.
  publication-title: Biochemistry
  doi: 10.1021/bi00685a003
– volume: 45
  start-page: 954
  year: 2004
  ident: ref60
  article-title: Combined data from LDL composition and size measurement are compatible with a discoid particle shape.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M300521-JLR200
– volume: 47
  start-page: 1620
  year: 2006
  ident: ref4
  article-title: Thematic review series: Patient-Oriented Research. What we have learned about VLDL and LDL metabolism from human kinetics studies.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R600013-JLR200
– volume: 101
  start-page: 9774
  year: 2004
  ident: ref50
  article-title: ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0403506101
– volume: 25
  start-page: 2185
  year: 2005
  ident: ref28
  article-title: Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000183727.90611.4f
– volume: 71
  start-page: 449
  year: 1983
  ident: ref55
  article-title: Cholesterol net transport, esterification, and transfer in human hyperlipidemic plasma.
  publication-title: J Clin Invest
  doi: 10.1172/JCI110789
– volume: 20
  start-page: 1796
  year: 2000
  ident: ref9
  article-title: Increased production of HDL apoA-I in homozygous familial defective apoB-100.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.20.7.1796
– volume: 31
  start-page: 1066
  year: 2003
  ident: ref21
  article-title: Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein.
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0311066
– volume: 22
  start-page: 339
  year: 1981
  ident: ref31
  article-title: A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)35376-1
– volume: 47
  start-page: 1631
  year: 2006
  ident: ref5
  article-title: Thematic review series: Patient-Oriented Research. What have we learned about HDL metabolism from kinetics studies in humans?
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R600008-JLR200
SSID ssj0035896
Score 2.0042508
Snippet Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good"...
Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond “bad” and “good”...
  Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000079
SubjectTerms Apolipoproteins
Biochemistry
Biochemistry/Macromolecular Assemblies and Machines
Biochemistry/Theory and Simulation
Blood Chemical Analysis - methods
Cardiovascular Disorders
Cholesterol
Computational Biology
Computational Biology/Systems Biology
Computer Simulation
Humans
Lipids
Lipoproteins - blood
Medical research
Models, Cardiovascular
Models, Statistical
Plasma
Statistical Distributions
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO-GZ4SQOKV1YjuOeyuIqiDRA1CxN8txHIi0JFGze-i_74ztXTYI1AtXZyJlHrZn4vH3EfLGitpWkNZnLTc847JmWaV4mwlVW1Vy03CBF5w_n5dnF_zTUiz3qL6wJyzAAwfDHVkJCYyhuTOV5bkVyjQ5d610jhVQgnv0UqrotpgKazATlWfmQlKcTDK-jJfmmMyPoo8OR1t3h_7vNrZx7W1KHrt_t0IvxtUw_S39_LOLcm9bOr1H7sZ8Mj0Jetwnt1z_gNwODJNXD8n3wNoQ__ilq27sGv_oOB0v8YwGu55xePCADV2fNtjRvr5KI5n3lMKYJ_JLfY97OkK6_cs8IhenH769P8sil0JmS8rWWdmaHD-1pogI18K0K4qWKeY83ruhNVOQmpkSsqVSlQ0skaZmhVWWUrS1ZY_Joh96d0BS6bAstCDMFRTXomol8qtbxovCWVEkhG2NqW0EGke-i5X2p2cSCo5gG40u0NEFCcl2b40BaOMG-Xfop50swmT7AQgeHYNH3xQ8CXmNXtYIhNFjp80Ps5km_fHruT5BanlYn6j8p9CXmdDbKNQOoKw18XYDmAydNZM8wJDaKjWBiphjQSaYJ-TVNsw0zHI8ujG9GzaTllRKJhlo_SQE3W8bVcgRKFhC5CwcZ4aZP-m7nx5HHHF3YMN6-j8s-YzcCZ002Ar6nCzWlxv3AtK1df3Sz8xrbRg9Og
  priority: 102
  providerName: Directory of Open Access Journals
Title Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma
URI https://www.ncbi.nlm.nih.gov/pubmed/18497853
https://www.proquest.com/docview/70773739
https://pubmed.ncbi.nlm.nih.gov/PMC2361219
https://doaj.org/article/c7916a01ea8c41c59ad14ef7ee327615
http://dx.doi.org/10.1371/journal.pcbi.1000079
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tki8IL6XASVCSDylSmInjpEQatjKQFpVDSr6ZjmuMyp1SWlaif733DlJIWgT4qVV7UvUu_PHne98P0Je6yjTCZj1Xs4U8xjPqJcIlnuRyLSImZqzCC84X4zj8yn7PItmB6TFbG0EWN3o2iGe1HS9HPz8sXsPE_6dRW3gQfvQYKWzxcCeV3NxSI5gb4rRHbtg-7gCjRKL2IVgOR6HX81lutve0tmsbE3__crdWy3L6iaz9O_syj-2q9F9cq-xM91hPTAekANTPCR3auTJ3SPyrUZzaE4CXUSwntuut-5kjbEbzIbG5tIWclgU7ilmum920G1BvisX2mwEwE0x992dgBl-rR6T6ejs64dzr8FY8HTs040X5yrAv5r5WCkuh-kYhjkV1Ng68MrPqAAxqhisqFjEc1g6VUZDLbTv59wYTZ-QXlEW5pi43KC7qIGYCXC6oyTniLuuKQtDo6PQIbQVptRNAXLEwVhKG1Xj4IjUspGoAtmowCHe_qlVXYDjH_Qp6mlPi-WzbUO5vpLNbJSag1Ws_MCoRLNAR0LNA2aQIRpysPEc8gq1LLFARoEZOFdqW1Xy05exHCLkPKxbPr-V6LJD9KYhyktgVqvm1gOIDJXVoTzGIdUyVQGLaHuBhRg45GU7zCTMfgzpqMKU20pyn3PKKXD9tB50v2WUIHZgRB3CO8OxI5huT7H4buuLYz0e2MhO_lPyz8jdOpkGs0Gfk95mvTUvwGLbZH1yyGccPpPRxz45Gqan6Qi-07Px5LJvT0H6dpr-Ap7WRTQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Lipidology%3A+Predicting+Lipoprotein+Density+Profiles+in+Human+Blood+Plasma&rft.jtitle=PLoS+computational+biology&rft.au=H%C3%BCbner%2C+Katrin&rft.au=Schwager%2C+Thomas&rft.au=Winkler%2C+Karl&rft.au=Reich%2C+Jens-Georg&rft.date=2008-05-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=4&rft.issue=5&rft.spage=e1000079&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pcbi_1000079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon