Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma

Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing tog...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 4; no. 5; p. e1000079
Main Authors Hübner, Katrin, Schwager, Thomas, Winkler, Karl, Reich, Jens-Georg, Holzhütter, Hermann-Georg
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2008
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1000079

Cover

Loading…
More Information
Summary:Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: BIOQUANT, Modeling Biological Processes, Institute of Zoology, University of Heidelberg, Heidelberg, Germany.
Performed the experiments: KW. Analyzed the data: KH. Contributed reagents/materials/analysis tools: TS KW. Wrote the paper: KH TS HH. Data-mined the literature; contributed to the model design; performed model building, implementations, and simulations; conceived and performed in-silico experiments and analyses: KH. Provided stochastic modeling experience and model implementations and contributed to the model design, simulations and analyses: TS. Provided experimental work and clinical experience in lipid diagnostics: KW. Provided mathematical modeling experience and lipoprotein metabolism knowledge: JR. Contributed to the model design and provided mathematical modeling experience, model implementation, and simulation: HH.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1000079