APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer

Non-small cell lung cancer (NSCLC) is known to carry heavy mutation load. Besides smoking, cytidine deaminase APOBEC3B plays a key role in the mutation process of NSCLC. APOBEC3B is also reported to be upregulated and predicts bad prognosis in NSCLC. However, targeting APOBEC3B high NSCLC is still a...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 37; no. 29; pp. 3924 - 3936
Main Authors Wang, Shixiang, Jia, Mingming, He, Zaoke, Liu, Xue-Song
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Non-small cell lung cancer (NSCLC) is known to carry heavy mutation load. Besides smoking, cytidine deaminase APOBEC3B plays a key role in the mutation process of NSCLC. APOBEC3B is also reported to be upregulated and predicts bad prognosis in NSCLC. However, targeting APOBEC3B high NSCLC is still a big challenge. Here we show that APOBEC3B upregulation is significantly associated with immune gene expression, and APOBEC3B expression positively correlates with known immunotherapy response biomarkers, including: PD-L1 expression and T-cell infiltration in NSCLC. Importantly, APOBEC mutational signature is specifically enriched in NSCLC patients with durable clinical benefit after immunotherapy and APOBEC mutation count can be better than total mutation in predicting immunotherapy response. In together, this work provides evidence that APOBEC3B upregulation and APOBEC mutation count can be used as novel predictive markers in guiding NSCLC checkpoint blockade immunotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0950-9232
1476-5594
1476-5594
DOI:10.1038/s41388-018-0245-9