Hydrodynamic interaction of two swimming model micro-organisms

In order to understand the rheological and transport properties of a suspension of swimming micro-organisms, it is necessary to analyse the fluid-dynamical interaction of pairs of such swimming cells. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangenti...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 568; pp. 119 - 160
Main Authors ISHIKAWA, TAKUJI, SIMMONDS, M. P., PEDLEY, T. J.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.12.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to understand the rheological and transport properties of a suspension of swimming micro-organisms, it is necessary to analyse the fluid-dynamical interaction of pairs of such swimming cells. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, referred to as a squirmer. The centre of mass of the sphere may be displaced from the geometric centre (bottom-heaviness). The effects of inertia and Brownian motion are neglected, because real micro-organisms swim at very low Reynolds numbers but are too large for Brownian effects to be important. The interaction of two squirmers is calculated analytically for the limits of small and large separations and is also calculated numerically using a boundary-element method. The analytical and the numerical results for the translational–rotational velocities and for the stresslet of two squirmers correspond very well. We sought to generate a database for an interacting pair of squirmers from which one can easily predict the motion of a collection of squirmers. The behaviour of two interacting squirmers is discussed phenomenologically, too. The results for the trajectories of two squirmers show that first the squirmers attract each other, then they change their orientation dramatically when they are in near contact and finally they separate from each other. The effect of bottom-heaviness is considerable. Restricting the trajectories to two dimensions is shown to give misleading results. Some movies of interacting squirmers are available with the online version of the paper.
Bibliography:ark:/67375/6GQ-N08NJCRL-5
istex:E4CF93E5C324F85FB70696590697E2ABEB6CAE5F
PII:S0022112006002631
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112006002631