SK2 channels are neuroprotective for ischemia-induced neuronal cell death
In mouse hippocampal CA1 pyramidal neurons, the activity of synaptic small-conductance Ca2+-activated K+ channels type 2 (SK2 channels) provides a negative feedback on N-methyl-d-aspartate receptors (NMDARs), reestablishing Mg2+ block that reduces Ca2+ influx. The well-established role of NMDARs in...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 31; no. 12; pp. 2302 - 2312 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.12.2011
Nature Publishing Group Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In mouse hippocampal CA1 pyramidal neurons, the activity of synaptic small-conductance Ca2+-activated K+ channels type 2 (SK2 channels) provides a negative feedback on N-methyl-d-aspartate receptors (NMDARs), reestablishing Mg2+ block that reduces Ca2+ influx. The well-established role of NMDARs in ischemia-induced excitotoxicity led us to test the neuroprotective effect of modulating SK2 channel activity following cerebral ischemia induced by cardiac arrest and cardiopulmonary resuscitation (CA/CPR). Administration of the SK channel positive modulator, 1-ethyl-benzimidazolinone (1-EBIO), significantly reduced CA1 neuron cell death and improved CA/CPR-induced cognitive outcome. Electrophysiological recordings showed that CA/CPR-induced ischemia caused delayed and sustained reduction of synaptic SK channel activity, and immunoelectron microscopy showed that this is associated with internalization of synaptic SK2 channels, which was prevented by 1-EBIO treatment. These results suggest that increasing SK2 channel activity, or preventing ischemia-induced loss of synaptic SK2 channels, are promising and novel approaches to neuroprotection following cerebral ischemia. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These authors contributed equally to this work. |
ISSN: | 0271-678X 1559-7016 |
DOI: | 10.1038/jcbfm.2011.90 |