Observation of the nonlinear Hall effect under time-reversal-symmetric conditions

The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants 1 , 2 ....

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 565; no. 7739; pp. 337 - 342
Main Authors Ma, Qiong, Xu, Su-Yang, Shen, Huitao, MacNeill, David, Fatemi, Valla, Chang, Tay-Rong, Mier Valdivia, Andrés M., Wu, Sanfeng, Du, Zongzheng, Hsu, Chuang-Han, Fang, Shiang, Gibson, Quinn D., Watanabe, Kenji, Taniguchi, Takashi, Cava, Robert J., Kaxiras, Efthimios, Lu, Hai-Zhou, Lin, Hsin, Fu, Liang, Gedik, Nuh, Jarillo-Herrero, Pablo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants 1 , 2 . The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field 2 ; this ‘anomalous’ Hall effect is important for the study of quantum magnets 2 – 7 . The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime—when the Hall voltage is linearly proportional to the external electric field—does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints 8 – 10 . Here we report observations of the nonlinear Hall effect 10 in electrical transport in bilayers of the non-magnetic quantum material WTe 2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe 2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current–voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment 10 of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe 2 . Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials. The nonlinear Hall effect is observed in bilayer WTe 2 in the absence of a magnetic field, providing a direct measure of the dipole moment of the Berry curvature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
SC0001088
ISSN:0028-0836
1476-4687
1476-4687
DOI:10.1038/s41586-018-0807-6