Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens
Here Fan et al . describe a protein analysis platform for the sensitive, nanoscale diagnosis and investigation of clinical specimens, including monitoring the response to targeted therapeutics. The nanofluidic proteomic immunoassay can be used to quantify total and phosphorylated forms of oncoprotei...
Saved in:
Published in | Nature medicine Vol. 15; no. 5; pp. 566 - 571 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.05.2009
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Here Fan
et al
. describe a protein analysis platform for the sensitive, nanoscale diagnosis and investigation of clinical specimens, including monitoring the response to targeted therapeutics. The nanofluidic proteomic immunoassay can be used to quantify total and phosphorylated forms of oncoproteins in small tumor samples and has been validated
in vivo
in mouse tumors and in clinical specimens from blood, surgical biopsies and fine-needle aspirates.
Current methods of protein detection are insensitive to detecting subtle changes in oncoprotein activation that underlie key cancer signaling processes. The requirement for large numbers of cells precludes serial tumor sampling for assessing a response to therapeutics. Therefore, we have developed a nanofluidic proteomic immunoassay (NIA) to quantify total and low-abundance protein isoforms in nanoliter volumes. Our method can quantify amounts of MYC oncoprotein and B cell lymphoma protein-2 (BCL2) in Burkitt's and follicular lymphoma; identify changes in activation of extracellular signal–related kinases-1 (ERK1) and ERK2, mitogen-activated kinase-1 (MEK), signal transducer and activator of transcription protein-3 (STAT3) and STAT5, c-Jun N-terminal kinase (JNK) and caspase-3 in imatinib-treated chronic myelogeneous leukemia (CML) cells; measure an unanticipated change in the phosphorylation of an ERK2 isomer in individuals with CML who responded to imatinib; and detect a decrease in STAT3 and STAT5 phosphorylation in individuals with lymphoma who were treated with atorvastatin. Therefore, we have described a new and highly sensitive method for determining oncoprotein expression and phosphorylation in clinical specimens for the development of new therapeutics for cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/nm.1903 |