Image Processing Pipeline for Liver Fibrosis Classification Using Ultrasound Shear Wave Elastography

The purpose of this study was to develop an automated method for classifying liver fibrosis stage ≥F2 based on ultrasound shear wave elastography (SWE) and to assess the system's performance in comparison with a reference manual approach. The reference approach consists of manually selecting a...

Full description

Saved in:
Bibliographic Details
Published inUltrasound in medicine & biology Vol. 46; no. 10; pp. 2667 - 2676
Main Authors Brattain, Laura J., Ozturk, Arinc, Telfer, Brian A., Dhyani, Manish, Grajo, Joseph R., Samir, Anthony E.
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.10.2020
Subjects
Online AccessGet full text
ISSN0301-5629
1879-291X
1879-291X
DOI10.1016/j.ultrasmedbio.2020.05.016

Cover

Loading…
More Information
Summary:The purpose of this study was to develop an automated method for classifying liver fibrosis stage ≥F2 based on ultrasound shear wave elastography (SWE) and to assess the system's performance in comparison with a reference manual approach. The reference approach consists of manually selecting a region of interest from each of eight or more SWE images, computing the mean tissue stiffness within each of the regions of interest and computing a resulting stiffness value as the median of the means. The 527-subject database consisted of 5526 SWE images and pathologist-scored biopsies, with data collected from a single system at a single site. The automated method integrates three modules that assess SWE image quality, select a region of interest from each SWE measurement and perform machine learning-based, multi-image SWE classification for fibrosis stage ≥F2. Several classification methods were developed and tested using fivefold cross-validation with training, validation and test sets partitioned by subject. Performance metrics were area under receiver operating characteristic curve (AUROC), specificity at 95% sensitivity and number of SWE images required. The final automated method yielded an AUROC of 0.93 (95% confidence interval: 0.90–0.94) versus 0.69 (95% confidence interval: 0.65–0.72) for the reference method, 71% specificity with 95% sensitivity versus 5% and four images per decision versus eight or more. In conclusion, the automated method reported in this study significantly improved the accuracy for ≥F2 classification of SWE measurements as well as reduced the number of measurements needed, which has the potential to reduce clinical workflow.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-5629
1879-291X
1879-291X
DOI:10.1016/j.ultrasmedbio.2020.05.016